Show simple item record

dc.contributor.authorÜncü, Yiğit Ali
dc.contributor.authorDanışman, Taner
dc.contributor.authorÖzdoğan, Hasan
dc.date.accessioned2022-06-23T07:00:30Z
dc.date.available2022-06-23T07:00:30Z
dc.date.issued2022
dc.identifier.citationÜncü, Y. A., Danışman, T., & Özdoğan, H. (2022). Calculations of GDR parameters for deformed nuclei using LogitBoost classifier and artificial neural network. Modern Physics Letters A, 37(13), 0–0.en_US
dc.identifier.issn0217-7323
dc.identifier.urihttp://hdl.handle.net/20.500.12566/1219
dc.description.abstractPhoto-nuclear interactions are important for investigating fundamental nuclear physics phenomena. The photo-absorption cross-section energy curve displays a wide resonance called giant dipole resonance (GDR) until 30 MeV. First, spherical and deformed nuclei have been determined by using LogitBoost classifier, and then GDR param- eters for deformed nuclei have been estimated by using an artificial neural network (ANN) via Levenberg–Marquardt algorithm which has been selected for the training sec- tion. In the last step, 233U(γ,n)232U, 234U(γ,n)233U, 235U(γ,n)234U, 236U(γ,n)235U, 238U(γ,n)237U reaction cross-sections have been computed by using GDR parameters obtained ANN estimations. The mean square error, root mean square error, and R are evaluated as the best performance of ANN estimates. Photo-neutron cross-section re- sults have been compared with experimental data from the literature. Consequently, it has been found that ANN algorithms can be used to determine the GDR parameters for deformed nuclei in the lack of experimental data of photo-absorption reaction.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisherModern Physics Letters Aen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectGDR parametersen_US
dc.subjectDev Dipol Rezonans parametreleritr_TR
dc.subjectDeformed nucleien_US
dc.subjectDeforme çekirdektr_TR
dc.subjectLogitBoost classifieren_US
dc.subjectLogitBoost sınıflandırıcıtr_TR
dc.subjectArtificial neural networksen_US
dc.subjectYapay sinir ağlarıtr_TR
dc.subjectTALYS 1.95en_US
dc.titleCalculations of GDR parameters for deformed nuclei using LogitBoost classifier and artificial neural networken_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.relation.publicationcategoryInternational publicationen_US
dc.identifier.wosWOS:000806242400006
dc.identifier.scopus2-s2.0-85131227197
dc.identifier.volume37
dc.identifier.issue13
dc.contributor.orcid0000-0001-6127-9680 [Özdoğan, Hasan]
dc.contributor.abuauthorÖzdoğan, Hasan
dc.contributor.yokid116763 [Özdoğan, Hasan]
dc.contributor.ScopusAuthorID55123312600 [Özdoğan, Hasan]
dc.identifier.doi10.1142/S0217732322500791


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record