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A novel approach to predictor selection among large-scale climate indices for 
seasonal rainfall forecasting in small catchments
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ABSTRACT
Utilizing identical climate indices as predictors for all climate divisions within large basins may result in 
unreliable rainfall forecasts at the sub-basin scale. This study aimed to develop a new approach to identify 
the most effective predictors among large-scale climate indices for seasonal rainfall forecasting in small 
areas. The proposed approach combines a selective singular value decomposition method (SSVD) with 
a non-linear sequential forward selection method (NLSFS). Applying the new algorithm for seasonal 
rainfall forecasting within two climate divisions in Karkheh basin, Iran, indicated that the climate indices 
identified by the SSVD differed between the study areas. The combination of these indices exhibited 
a correlation with seasonal rainfall approximately 11% higher than those derived from the SVD method. 
Moreover, NLSFS significantly enhanced the forecast accuracy compared to the frequently employed 
linear sequential forward selection (SFS) method, and the optimal predictors chosen by the two methods 
differed across all seasons.
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1 Introduction

Rainfall is one of the most important components of the 
hydrological cycle and can impact catchment runoff signifi
cantly. It is well-documented that accumulated rainfall amount 
over a long time horizon (i.e. monthly, seasonal, and annual 
rainfall) may be influenced by the interaction between oceanic 
and atmospheric cycles, aka climatic oscillations (Mohammadi 
et al. 2020, Xie et al. 2021, Wu et al. 2022). For example, the 
effect of El Niño Southern Oscillation (ENSO) on seasonal 
rainfall in Eastern Africa (Vashisht et al. 2021), Southern 
America (Cai et al. 2020), Australia (Ma et al. 2023), Eastern 
Asia (Ng et al. 2019), Western Europe (Martija-Díez et al.  
2021), and Iran (Dehghani et al. 2020, Bahrami et al. 2021) 
has been reported in the relevant literature. Similarly, the 
influence of the Pacific Decadal Oscillation (PDO), North 
Atlantic Oscillation (NAO), and Atlantic Multi-decadal 
Oscillation (AMO) on long-term rainfall variation over the 
US (Liu et al. 2018, Zhao and Brissette 2022), Western 
Europe (Fernández-González et al. 2012, Tabari and Willems  
2018), Morocco (Marchane et al. 2015), and Iran (Ruigar and 
Golian 2015, Dehghani et al. 2020) has been shown. Several 
studies have also proved the effect of sea surface temperature 
(SST) on local and regional rainfall events. Examples include 
but are not limited to the studies demonstrating the effect of 
Pacific and Indian Ocean SST on the Australian monsoon 
(Heidemann et al. 2022); the Indian Ocean SST on summer 
rainfall across India (Vibhute et al. 2020); the Atlantic Ocean 
SST on winter rainfall over Northern Europe, West Africa, and 
South America (Vallès‐Casanova et al. 2020, Börgel et al.  

2022); the Mediterranean Sea SST on rainfall across Turkey 
(Desbiolles et al. 2021), the Sahel (Park et al. 2016), Greece 
(Kassomenos and Mcgregor 2006), and Iran (Meidani and 
Araghinejad 2014); and the Persian Gulf SST on rainfall in 
the west and south of Iran (Nasemosadat 1998). Relying on 
teleconnections between climate oscillations/SSTs and rainfall 
patterns, many recent studies have shown that large-scale 
climate indices can be used as predictors for long-term rainfall 
forecasting. For instance, Kalra and Ahmad (2012) utilized the 
PDO, NAO, AMO, and ENSO series to forecast annual rainfall 
in the Colorado River basin. Schepen et al. (2012) pointed out 
that PDO and the South Oscillation Index (SOI) can be used 
for seasonal rainfall forecasting across Australia.

Undoubtedly, rainfall forecasting is one of the most chal
lenging tasks in the hydrological forecasting community, as the 
level of uncertainty in rainfall patterns is significantly higher 
than those of other variables such as temperature and stream
flow (Danandeh Mehr 2021, Fayaz et al. 2022). For appropriate 
watershed management, it is important to forecast the amount 
of monthly, seasonal, and even annual rainfall as it benefits the 
authorities in the decision-making process concerning water 
deficit, droughts, and the optimal operation of hydro systems, 
such as dams and reservoirs, and change in cultivation/land 
use pattern for a certain period so that precious resources can 
be saved or allocated for high-priority demands (Li et al. 2020, 
Zhu et al. 2022, Asghari Saraskanrood et al. 2023). In addition, 
flooding is a major challenge in watershed management that 
emphasizes the need for accurate rainfall forecasting models 
(Hosseini et al. 2021, Oborie and Rowland 2023). Since a large 
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portion of Iran is in an arid and semi-arid climate facing both 
surface and groundwater scarcity, medium- to long-term fore
casts of rainfall amount are also crucial for food production, 
water allocation, and developing an optimal irrigation system.

Focusing on Iran’s climate, only a few studies have used 
large-scale climate indices for rainfall prediction across the 
country; however, the results were promising. For instance, 
Fallah-Ghalhary et al. (2009) showed that pressure differences 
between the Persian Gulf and the Adriatic Sea, the Oman Sea, 
and the Red Sea could be efficiently used for six-month rainfall 
forecasting in eastern Iran. Nazemosadat et al. (2010) reported 
that Persian Gulf SST is a dominant predictor for autumn and 
winter rainfall in the southwest of Iran. In another study, NAO 
and SOI, as well as the SST and pressure variation across the 
Persian Gulf, were reported as suitable predictors for long-lead 
rainfall forecasting in the Karoon River basin (Sarah et al.  
2011). More recently, Danandeh Mehr et al. (2017) demon
strated that SST of the Black Sea, Mediterranean Sea, and Red 
Sea can be successfully used for maximum monthly rainfall 
prediction in the northwest of Iran. Also, Choubin et al. (2017) 
revealed that AMO, SOI, and East Central Tropical Pacific Sea 
surface temperature (NINO3.4) are the most effective climate 
indices for the prediction of winter and spring rainfall in 
Maharloo-Bakhtegan basin in the southwest of Iran.

Since the underlying patterns linking oceanic–atmospheric 
oscillations and rainfall features are often complex and inher
ently non-linear, artificial intelligence (AI) methods are com
monly implemented to develop rainfall forecasting models 
based on climate oscillations (e.g. Danandeh Mehr et al.  
2017). Artificial neural networks (ANNs) and support vector 
regression (SVR) are some of the notable AI methods com
monly implemented for this task. The structure of ANN mod
els is based on empirical risk minimization, which minimizes 
total error (Modaresi and Araghinejad 2014). Since ANNs 
have various architectures, selecting an optimum architecture 
involves a time-consuming trial-and-error process (Samadi 
et al. 2015, Abdullah et al. 2023). In contrast, SVR models 
are based on structural risk minimization in which overfitting 
is avoided via minimizing empirical risk. Thus, they are more 
suitable for generalization tasks (Modaresi et al. 2018). In 
addition, the architecture of any SVR model is expressed by 
a quadratic optimization problem which can be solved by 
standard programming algorithms (Pradhan 2012, Li and 
Sun 2020). Therefore, the SVR model was found to be more 
efficient than ANNs for hydrological and meteorological fore
casting (Modaresi et al. 2018, Ghasemi et al. 2023).

Choosing proper inputs for AI models is a crucial task as 
they significantly affect the model’s accuracy. In previous 
studies, different input selection criteria such as Pearson cor
relation coefficients (PCC) (Modaresi et al. 2016, Mohammadi 
et al. 2020), principal component analysis (PCA) (Noori et al.  
2011, Choubin et al. 2017), singular value decomposition 
(SVD) analysis (Lin et al. 2019, Ali et al. 2020, Bhanu 2021), 
the forward selection method (Noori et al. 2011, Dehghani 
et al. 2014, Selvi and Huseyinov 2020) and the mutual infor
mation (MI) index (Modaresi et al. 2016, Danandeh Mehr 
et al. 2022) were used to reduce the number of predictors 
and detect more effective inputs. In a recent study, Ren et al. 
(2020) compared the impact of PCC, MI, and gamma test 

criteria on input selection for three streamflow forecasting 
models, namely multiple linear regression, K-nearest neigh
bour, and ensemble extreme learning machine. The authors 
demonstrated that there was no dominant selection method 
for ensemble extreme learning machine or K-nearest neigh
bour models; however, the partial Pearson coefficient index 
outperforms its counterparts when resampling is used.

Considering the previous studies related to seasonal rainfall 
forecasting using climate indices, this study addressed the 
following identified gaps:

● Climate indices are commonly used for rainfall forecast
ing at regional scale/large basins. However, applying the 
same indices for small catchments within a basin may 
lead to unreliable rainfall forecasts.

● Despite the critical role of spring rainfalls in providing 
the water needed for rainfed cultivation in Iran, especially 
in the Khuzestan Plain, the previous studies have instead 
investigated the predictability of autumn and winter rain
fall using climate indices.

● So far, the SVD method has been used to combine fea
tures, not to detect the most effective ones, while the type 
of input variables fed to the SVD model affects the 
correlation between its output series.

● The sequential forward selection (SFS) method is based 
on linear modelling. When it is employed as a predictor 
selection method for a predominantly non-linear pro
cess, it could result in incorrect predictors.

To address the identified limitations in predicting seasonal 
rainfall in localized regions and to enhance forecast accuracy, 
this study was crafted to formulate a resilient method for 
selecting optimal predictors in seasonal rainfall forecasting 
through the incorporation of extensive climate indices. We 
developed a novel hybrid AI method that effectively synergizes 
a Selective Singular Value Decomposition technique (SSVD) 
with a Non-linear SFS (NLSFS) approach. The SSVD identifies 
the most influential climate indices, while the NLSFS estab
lishes the optimal combination of these indices. The proposed 
algorithm was applied to forecast autumn, winter, and spring 
rainfall in two sub-basins of a large basin in Iran, characterized 
by different climatic conditions.

2 Study area and data

Karkheh basin is one of the 30 main hydrological basins of 
Iran, located in southwestern Iran and included in the Persian 
Gulf basin (Fig. 1). It lies between latitudes 33°40’ and 35°00’N 
and longitudes 46°23’ and 49°12’E, and comprises five pro
vinces: Hamedan, Kermanshah, Ilam, Lorestan, and 
Khuzestan. The Khuzestan Plain, which is the most important 
agricultural core of Iran, is situated in the south of this basin.

The weather of the Karkheh basin ranges from mountai
nous (very cold) with cold winters and mild summers in the 
northern regions to hot with mild winters and long and warm 
summers in the southern regions, while its humidity is diverse, 
from arid to humid (Fig. 1). The average annual rainfall over 
this basin varies from 300 to 800 mm. The major sources of 
rainfall in this basin are the moist air flows originating from 
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the Mediterranean Sea (30°15'–36°53'N, 10°01'–36°10'E) and 
the Persian Gulf (24°00'–30°00'N, 47°56'–56°30'E), with an 
annual frequency of 64.5% and 22.9%, respectively (Modaresi 
et al. 2016). Owing to the presence of different climates across 
the basin (Fig. 1), and the effect of diverse climate indices on 
the weather of the Karkheh basin (Dezfuli et al. 2010, Tabari 
et al. 2014, Modaresi et al. 2016), this proposed model was 
applied in the upstream Seimareh and Karkheh sub-basins, 
individually, to assess its performance in different conditions. 
As illustrated in Fig. 1, a total of 27 raingauge stations (18 at 
Seimareh and nine at Karkheh) are available in the study area.

In addition, the seasonal average of the climate indices 
including ENSO (i.e. SOI and NINO3.4; SOI data is available 
at: http://www.bom.gov.au/climate/enso/ and NINO 3.4 data is 
available at: https://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/ 
sstoi.indices), NAO (available at: http://www.cgd.ucar.edu/cas/ 
jhurrell/indices.html), PDO (available at: http://research.jisao. 
washington.edu/pdo/PDO.latest), and AMO (available at: 
http://www.esrl.noaa.gov/psd/data/correlation/amon.sm.long. 
data), as well as the seasonal averages of the SST time series of 
the Mediterranean Sea and the Persian Gulf (available at: http:// 
www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html) 
were used to determine the optimum combinations of large- 
scale predictors. It is worth remembering that the monthly time 
series of all indices are available in the given links, while monthly 
SST series are measured at a spatial resolution of 1° × 1° (i.e. 101 
and 26 nodes over the Mediterranean Sea and the Persian Gulf, 
respectively). The period of available data from the climate 
indices also differs; The shortest length belongs to the SST series 
of the Mediterranean Sea and Persian Gulf as well as the time 
series of Nino 3.4, which are available since 1982. But reliable 

local rainfall data for both studied areas were available from 
1987. Therefore, data for the period 1987–2019 were used in this 
study, and all the data were normalized and de-trended. The first 
to fourth lags of the seasonal SST series (of all nodes) and the 
climate indices during this period were used as initial predictors.

3 Methodology

3.1 Selective singular value decomposition (SSVD) 
method

SVD is a data mining technique based on the theory of linear 
algebra. It is a powerful statistical method that can produce 
the most correlated series from a large amount of data. Due to 
the use of a cross-covariance matrix, this method can extract 
the most correlated data series from spatiotemporal variables 
like SST (Lin et al. 2019). Also, in the outputs of the SVD 
method, the weights of the time series in the process of 
combination and creating the correlated data series are 
recognizable. With respect to this ability, the SVD method 
was applied in the current research for two purposes: first, to 
detect the most appropriate climate indices and SST nodes of 
the Mediterranean Sea and Persian Gulf for each study area; 
and, second, to make an ensemble of the chosen indices or 
SST nodes to create time series that exhibits the highest 
correlation with seasonal rainfall.

SSVD is an advanced SVD method in which the most 
effective predictors are detected and combined through the 
following algorithm. Based on the SVD method, the cross- 
covariance matrix (COVARgs) of the standardized values of 
predictors (such as the seasonal SST of the Mediterranean Sea 

Figure 1. Location map of the study areas in Iran, illustrating the location and climatic variations (Asadi Oskouei et al. 2022) of Karkheh and Seimareh sub-basins at the 
upstream of the respective dams, and the location of the studied meteorological stations.
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at 101 points) and predicted variables (such as the seasonal 
rainfall from 18 rain stations in the Seimareh sub-basin) can be 
broken down as follows: 

SVD COVARgs
� �

¼ UggSgsVT
ss (1) 

where Ugg and Vss are two orthogonal matrices, containing 
singular vectors, and Sgs is a diagonal matrix with the singular 
values arranged in descending order.

In order to compare the relative importance of modes based 
on the singular values, the squared covariance fraction (SCF) is 
calculated as a useful measurement as follows (Bretherton et al.  
1992): 

SCFj ¼
C2

j
Pminðg;sÞ

j ¼ 1 C2
j

(2) 

where Cj represents each of the singular values placed on the 
main diameter of the Sgs matrix. If the SCF value of the first 
mode is too high relative to the other modes, the combined 
series of SST values as well as the rainfall series which have the 
highest correlation with each other can be achieved using the 
coefficients in the first column of the singular vector matrices – 
Ugg and Vss, respectively. For example, the combined series of 
SST (SSTP) and rainfall (R) for the first mode is calculated with 
i = 1 in Equation (3): 

SSTP ið Þ ¼

sst1;1 � � � sst1;g

..

. . .
. ..

.

ssty;1 � � � ssty;g

2

6
6
4

3

7
7
5U :; ið Þ

R ið Þ ¼

r1;1 � � � r1;s

..

. . .
. ..

.

ry;1 � � � ry;s

2

6
6
4

3

7
7
5V :; ið Þ

(3) 

where g is the number of SST grid cells, y is the number of 
years and s represents the number of rain stations, while i can 
range from 1 up to the maximum number of significant 
modes.

The SVD output value placed in each column of U matrix 
plays the role of weights for predictors (like climate indices); 
so that a higher value represents a higher effect of that index. 
On this basis, in the SSVD method proposed in this 
research, the more effective predictors were identified 
based on their weights, and several combinations of them 
were tested and evaluated so that the best combination 
series having the most correlation with the predicted vari
able was achieved. The combined series produced by this 
method had a higher correlation than that obtained from 
SVD method.

3.2 Non-linear sequential forward selection (NLSFS) 
method

The NLSFS is a new version of the traditional SFS method in 
which a non-linear model is utilized for predictor selection. 
The SFS is originally a linear technique in which the most 
appropriate subset of predictors, as model input, are chosen 
to forecast or model another variable, as model output. In 

this method, first, each of the predictors is given as input to 
the linear model and the best of them (S1) is selected based 
on the model results with the least error (S1 = [Pi]). In 
the second step, other predictors are, one by one, paired 
with the best predictor selected in the previous step (S1), 
and each of the pairs is used as input to the linear model. If 
the model error in this step is lower than in the step before, 
the corresponding pair is selected as the best feature 
(S2 = [Pi,Pj]). In the next step, the remaining predictors 
are added to S2 and the best set of three predictors having 
the minimum error as compared to the previous steps is 
chosen (S3 = [Pi,Pj,Pk]). This process is continued until 
a non-predefined number of predictors that lead to the 
best linear modelling result are selected as the final best 
subset of predictors.

Since the relationship between climate features and seaso
nal rainfall could have a non-linear form, in the current 
study, an NLSFS method based on the least squares–support 
vector regression model (LS-SVR), which has several kernel 
functions ranging from linear to polynomial and radial basis 
functions, was applied in order to detect the best subset of 
predictors and the results were compared to those from the 
SFS method.

3.3 Least squares-support vector regression (LS-SVR)

LS-SVR is a type of SVR model in which the least 
squares method is implemented to find the hyper planes at 
the the maximum distance from the support vectors, nearest 
the observed data, on both sides (Modaresi and Araghinejad  
2014).

In this method, a non-linear mapping of ϕ in the trait space 
for Xt 2 Rm as the input data and Y Xtð Þ 2 R as the output data 
is computed as follows (Suykens et al. 2002): 

Y Xtð Þ ¼ wT :ϕ Xtð Þ þ b (4) 

where w and b are the value of weights and biases of the 
regression function, respectively, calculated by minimizing 
the following objective function: 

Min
w;b;ei

j w; eð Þ ¼
1
2

wTwþ
γ
2

Xn

t ¼ 1
e2

t

S:t : Tt ¼ wTϕ Xtð Þ þ bþ ett ¼ 1; 2; . . . ; n
(5) 

where e is the amount of the errors, and γ is the regularization 
parameter of the model that controls the flatness of the 
approximation function, while its optimum amount should 
be determined by the user.

Solving the objective function using the Lagrangian func
tion based on the Karush-Kuhn-Tucker condition leads to the 
following relation: 

Y Xð Þ ¼
Xn

t ¼ 1
αtK X;Xtð Þ þ b (6) 

where αt (t = 1,2, . . ., n) are Lagrange multipliers or support 
values, and K(X,Xt) is a kernel function, having three types of 
functions – linear function, polynomial function and radial 
basis function (RBF) – as follows: 
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Linear : K xi; xj
� �

¼ xT
i xj (7) 

Polynomial : Kðxi; xjÞ ¼ ðxT
i xj þ tÞd (8) 

RBF : Kðxi; xjÞ ¼ expð� xi�k xj
�
�2
=S2Þ (9) 

where t and d are the polynomial parameters, and S is the 
RBF parameter. In the current paper, all three kernel func
tions were applied and assessed to find the best combination 
of the predictors. Regarding the amount of data for model 
calibration, the optimum values of parameters were calcu
lated via the leave-one-out cross-validation (LOOCV) 
method (Bramer 2020) to achieve a reliable structure for 
the model.

3.4 Assessment criteria

To recognize the best subset of predictors, the results of the LS- 
SVR model using the NLSFS method were evaluated using 
Nash-Sutcliffe efficiency (NSE), root mean square error 
(RMSE) and PCC assessment criteria: 

NSE ¼ 1 �
Pn

t ¼ 1 Tt � Ytð Þ
2

Pn
t ¼ 1 Tt � �Tð Þ

2 (10) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

t ¼ 1 Tt � Ytð Þ
2

n

s

(11) 

PCC ¼
Pn

t ¼ 1 Tt � �Tð Þ Yt � �Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

t ¼ 1 Tt � �Tð Þ
2

q

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

t ¼ 1 Yt � �Yð Þ
2

q (12) 

where Yt and Tt are forecasted and observed values of rainfall 
for tth data, �T and �Y are the average of observed and forecasted 
values of rainfall, respectively, and n is the number of data.

NSE ranges from −∞ to 1.0, indicating the worst and best 
model performance, respectively. Values from 0.0 to 1.0 indicate 
an acceptable performance whilst values lower than zero reveal 
that the average of the observed data is a better estimation than 
the forecasted values, which indicates unacceptable perfor
mance (Moriasi et al. 2007). The value of RMSE varies from 
0.0 to +∞, while PCC ranges from −1.0 to 1.0. Lower RMSE 
values and higher PCC values indicate greater model reliability.

3.5 The proposed input selection approach

In this study, a hybrid process (shown in Fig. 2) was introduced 
to detect the optimal predictors for improving the accuracy of 
seasonal rainfall forecasting in small catchments. As illustrated 
in the figure, first, the collected climate indices and SST series 
were processed by the SSVD method. In this process, the most 
effective climate indices and SST nodes are identified and an 
ensemble series of them is produced using the weights calcu
lated with the SSVD method, so that the new time series pro
vides the highest correlation with the historical seasonal rainfall.

In the next step, the individual climate/SST and ensemble 
series which had a reliable correlation at the confidence level of 
98%, based on the statistical t-test method, with seasonal rain
fall for one to four seasons ahead were chosen as the initial 
appropriate predictors. Finally, the initially selected predictors 
resulting from the previous steps were assessed one by one 
through the NLSFS method performed by an LS-SVR model 
which has an optimized structure according to three types of 
kernel functions. The best predictors for each season are even
tually determined with respect to NSE, RMSE, and PCC.

Figure 2. Flowchart of the research steps. These four steps were performed for selection of the optimal predictors for each of the autumn, winter and spring rainfalls in 
each of the studied sub-basins.
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4 Results

4.1 Results of SSVD analysis

4.1.1 Results of assessing climate indices as rainfall 
predictors
To assess the effect of each climate index and their combinations 
obtained via the SVD and SSVD methods, the PCC was calculated 
for delays of one to four seasons at each sub-basin (see Figs 3–5 
for the autumn, winter, and spring rainfall, respectively). It is 
worth noting that the results of the SVD and SSVD methods 
are based on the first mode SCF which was above 90% in all cases. 
It can be seen from Figs 3–5 that the effects of the seasonal 
fluctuations of the studied climate indices on the seasonal rainfall 
of the sub-basins were generally different in two aspects. There 
are different positive and negative correlations between the sea
sonal climate indices and seasonal rainfall in different seasons in 
each sub-basin. Besides, the sign and value of the correlations 
between rainfall and climate indices vary spatially in each season.

According to Fig. 3, the effect of the seasonal average of the 
AMO index in all seasons on the autumn rainfall was similar in 
both sub-basins in terms of negative correlation; such conditions 

also existed for the NAO index but in terms of positive correla
tion. However, according to the other indices, there were no 
similar conditions in both sub-basins in that the correlation of 
PDO fluctuations in all seasons with the autumn rainfall was 
positive in Seimareh while it was negative in Karkheh. Besides, 
the fluctuations of the SOI in all seasons had negative correlations 
with autumn rainfall in Seimareh while there were positive corre
lations between autumn and winter averages of this index and 
autumn rainfall in Karkheh. In addition, there was a dissimilarity 
between the behaviour of the spring average of NINO3.4 and the 
autumn rainfall in the studied areas.

Figure 4 demonstrates positive correlations between the 
winter rainfall in both sub-basins and the seasonal average of 
AMO and NINO3.4, while the ratio of their correlation coeffi
cients in different seasons was not similar. The type of correla
tion between the winter rainfall and the other three climate 
indices in some seasons differed in terms of the sign of the 
correlations. This was recognizable in the winter fluctuation of 
SOI and NAO as well as the spring fluctuation of PDO.

In addition, Fig. 5 shows that the seasonal average of SOI 
and AMO indices in all seasons other than winter for AMO 
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Figure 3. The Pearson correlation coefficient (PCC) of single and combined climate indices with autumn rainfall of (a) Seimareh and (b) Karkheh sub-basins.
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had a negative correlation with the spring rainfall in both 
studied areas. The same condition occurred for the PDO 
index in terms of positive correlation. The seasonal fluctua
tions of NINO 3.4 also had a positive correlation with spring 
rainfall in both sub-basins from summer to winter, whereas its 
correlation type in the spring was different in the studied areas. 
The type of correlation between the seasonal average of NAO 
and the spring rainfall was different in various seasons: there 
was a positive correlation in the summer and winter, and 
a negative one in the spring in both sub-basins. On the other 
hand, the autumn average of NAO had a negative correlation 
with Karkheh rainfall, but there was a positive correlation 
between it and Seimareh rainfall.

With respect to Figs 3–5, there were positive and negative 
correlations at different confidence levels between the seasonal 
average of climate indices and seasonal rainfall in both studied 
areas. However, the combined time series resulting from the 
SSVD method had dramatically positive correlations with all 
seasonal rainfall in both sub-basins, and they were mostly 
reliable at the significance level of 98% (PCC > 0.41) for the 

autumn and winter rainfall. Moreover, the results indicated 
that in almost all cases, the time series obtained from the SSVD 
method were on average 11% more correlated to the seasonal 
rainfall as compared to the SVD series. Table 1 presents the 
climate indices included in the combined series of the SSVD 
method.

With respect to Table 1, it can be inferred that the climate 
indices chosen by the SSVD method as the most effective ones 
on the seasonal rainfall were not the same for the three seasons 
and for the studied sub-basins, which may be due to the 
different climate of the studied areas. Furthermore, an assess
ment of the selected indices regarding their correlation with 
the seasonal rainfall revealed that they individually do not 
necessarily have a reliable correlation with a high confidence 
level. This could be observed, for instance, in the spring, 
summer, and autumn combinations of climate indices for 
winter rainfall in both sub-basins. In addition, the spring series 
of the NINO 3.4 had a reliable correlation with the winter 
rainfall of the Karkheh sub-basin while it was not included in 
the SSVD series. This is due to the data analysis method in the 
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Figure 4. The Pearson correlation coefficient (PCC) of single and combined climate indices with winter rainfall of (a) Seimareh and (b) Karkheh sub-basins.
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SSVD, which is based on the relationship among both the 
predictors and predictands. Therefore, only the correlation 
coefficient between climate indices and the seasonal rainfall 
cannot be considered as the index’s selection criterion.

4.1.2 Results of assessing SSTs as rainfall predictors
To assess the effect of the SST of each sea on the seasonal rainfall 
of the sub-basins, the correlation coefficient was calculated 
between seasonal rainfall and the average SST series as well as 
the SSVD series of the nodes of the Mediterranean Sea and the 
Persian Gulf, separately with one to four seasons’ delay. For 
instance, the results for the spring season are presented in Fig. 6 
(see the Appendix, Figs A1 and A2 for autumn and winter 
rainfall, respectively). Figure 6 shows that the SST of the 
Mediterranean Sea in all seasons had a similar effect on the 
spring rainfall of both studied areas, although the values of its 
correlations in all seasons were not equal. However, the effect of 
the average SST of the Mediterranean Sea in all seasons on the 
autumn and winter rainfall of the Seimareh sub-basin was 

almost contrary to that of the Karkheh basin in terms of sign 
of correlation (see the Appendix, Figs A1 and A2). Thus, the 
associated PCC values are not reliable at the confidence level of 
98%. Evaluation of the Persian Gulf average SST revealed that it 
had a similar effect on the winter and spring rainfall of both sub- 
basins, while there was no such condition for the autumn 
rainfall.

Despite the existence of positive and negative correlations, 
the implementation of the SSVD method for SST of the seas 
resulted in creating seasonal combined series of each sea SST 
that all had positive correlations with seasonal rainfall while 
their values were more than the absolute value of the correla
tions between average SST series and rainfall. However, only 
the spring rainfall of both studied areas (Fig. 6) was affected by 
the SST of the two seas in winter (Mediterranean Sea) and 
autumn (Persian Gulf) at the 98% confidence level.

Furthermore, the evaluation of the weights of SST nodes in 
the series resulting from the SVD method for the spring rain
fall revealed those in the Mediterranean Sea between latitudes 
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Figure 5. The Pearson correlation coefficient (PCC) of single and combined climate indices with spring rainfall of (a) Seimareh and (b) Karkheh sub-basins.
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32°30’ and 34°30’N, and longitudes 29°30’ and 34°30’E were the 
highest (>0.4) which were included in the combined series of the 
winter SST by the SSVD method for both studied sub-basins. The 
identified section of the Mediterranean Sea is the easternmost 

section and the nearest one to Iran. But the weights of all nodes of 
the Persian Gulf were almost the same in the autumn SST series 
resulting from the SVD method for both sub-basins. As a result, 
all of them were used in the SSVD method.

Table 1. The most effective combination of seasonal climate indices attained for seasonal rainfall forecasting in each sub-basin.

Seasonal average of climate indices

Seimareh sub-basin Karkheh sub-basin

Seasonal rainfall Seasonal rainfall

Spring Autumn Winter Spring Autumn Winter

Spring AMO ✓ ✓ ✓ ✓ ✓ ✓
Nino 3.4 ✓ ✓
SOI ✓ ✓ ✓ ✓ ✓ ✓
PDO ✓ ✓ ✓
NAO ✓ ✓ ✓ ✓ ✓

Summer AMO ✓ ✓ ✓ ✓
Nino 3.4 ✓ ✓ ✓
SOI ✓ ✓ ✓ ✓
PDO ✓ ✓ ✓ ✓
NAO ✓ ✓ ✓ ✓

Autumn AMO ✓ ✓ ✓ ✓ ✓
Nino 3.4 ✓ ✓
SOI ✓ ✓ ✓ ✓
PDO ✓ ✓ ✓
NAO ✓ ✓ ✓ ✓ ✓ ✓

Winter AMO ✓ ✓ ✓ ✓
Nino 3.4 ✓ ✓ ✓ ✓
SOI ✓
PDO ✓ ✓ ✓ ✓
NAO ✓ ✓ ✓ ✓
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4.2 Results of initial selection of the predictors

The initial selection of the appropriate predictors was done from: 
(1) all the SSVD combined series of climate indices, (2) the single 
seasonal average series of each climate index that was not 
included in the SSVD combined series, and (3) the SSVD com
bined series of the Mediterranean Sea and the Persian Gulf SST. 
The selection process was based on the Student’s t-test of the PCC 
at the confidence level of 98%. On this basis, the predictors having 
PCC > 0.41 were selected as the initially appropriate predictors. 
Tables 2 and 3 display the initial selected predictors.

According to Tables 2 and 3, it can be suggested that all the 
reliable predictors for seasonal rainfall forecasting of both sub- 
basins were the combined series of climate indices for autumn and 
winter rainfall, and the SST of the Mediterranean Sea and the 
Persian Gulf for spring rainfall while they resulted from the SSVD 
method. In addition, the spring series of the NINO 3.4, which had 
a reliable correlation with the winter rainfall of the Karkheh sub- 
basin and was not included in the SSVD series, was considered 
individually as a winter rainfall predictor for the Karkheh sub- 
basin.

4.3 Results of the NLSFS method

Although the predictor selection was based on the value of PCC, 
the difference of the PCC values from �1 suggested that the 
relation between the predictors and predictand was not comple
tely linear. So, the NLSFS method based on LS-SVR with three 
types of kernel functions (linear, polynomial, and RBF) was run 
using the initially selected predictors (see Section 3.3) to detect the 
best predictors for seasonal rainfall prediction in each sub-basin. 
To this end, the LS-SVR model was calibrated (trained) based on 
the LOOCV method using 22 years of data and then validated 
(tested) using 10 years of data (70% and 30% of seasonal data) in 
each of the NLSFS steps. For example, results for the spring 
season in the calibration and validation phases including three 
assessment criteria (NSE, RMSE, and PCC), as well as the best 
kernel type and the value of its parameters and the gamma 
parameter, are presented in Tables 4 and 5, for Seimareh and 
Karkheh sub-basins, respectively (see the Appendix, Tables A1– 
A4 for the results of the autumn and winter). The results indicated 
that the connection between all predictors and seasonal rainfall in 
both examined regions was non-linear, as optimal kernel func

Table 2. Initial selected predictors for seasonal rainfall forecasting of the Seimareh sub-basin.

Predictor ID

Autumn rainfall Winter rainfall Spring rainfall

Predictor name PCC Predictor name PCC Predictor name PCC

P1 Summer SSVD 0.637 Summer SSVD 0.533 Autumn PERG SSVD 0.532
P2 Spring SSVD 0.607 Autumn SSVD 0.496 Winter MEDIT SSVD 0.452
P3 Winter SSVD 0.511 Spring SSVD 0.442 Winter PERG SSVD 0.430
P4 Autumn SSVD 0.474 Summer PERG SSVD 0.414

Table 3. Initial selected predictors for seasonal rainfall forecasting of the Karkheh sub-basin.

Predictor ID

Autumn rainfall Winter rainfall Spring rainfall

Predictor name PCC Predictor name PCC Predictor name PCC

P1 Autumn SSVD 0.571 Summer SSVD 0.559 Winter MEDIT SSVD 0.555
P2 Winter SSVD 0.535 Spring SSVD 0.517 Autumn PERG SSVD 0.430
P3 Summer SSVD 0.523 Autumn SSVD 0.487
P4 Spring SSVD 0.477 Spring Nino 3.4 0.414

Table 4. NLSFS results for spring rainfall forecasting in the Seimareh sub-basin.

Predictors Best kernel Best gamma Best parameters

Calibration Validation

NSE RMSE PCC NSE RMSE PCC

P1* RBF 0.4 S2 = 40 0.411 0.782 0.698 0.278 0.791 0.654
P2 RBF 2.1 S2 = 65 0.220 0.900 0.493 0.219 0.823 0.654
P3 RBF 8.5 S2 = 10 0.279 0.866 0.533 0.186 0.840 0.438
P4 Polynomial 0.2 t = 0.1 d = 5 0.402 0.788 0.635 0.004 0.929 0.185
P1,P2 RBF 10 S2 = 15 0.777 0.481 0.885 0.494 0.662 0.746
P1,P3 RBF 0.6 S2 = 100 0.377 0.804 0.681 0.235 0.815 0.487
P1,P4 RBF 0.2 S2 = 100 0.320 0.841 0.697 0.027 0.918 0.183
P1,P2,P3 RBF 1 S2 = 100 0.449 0.756 0.726 0.315 0.771 0.679
P1,P2,P4 RBF 1.8 S2 = 50 0.654 0.600 0.838 0.152 0.858 0.415

*bold rows reveal the best predictor in each phase of the NLSFS method.

Table 5. The NLSFS results for spring rainfall forecasting in the Karkheh sub-basin.

Predictors best Kernel best gamma best Parameters

Calibration Validation

NSE RMSE PCC NSE RMSE PCC

P1* Polynomial 1.1 t = 0.1 d = 3 0.254 0.927 0.505 0.251 0.703 0.573
P2 RBF 0.2 S2 = 90 0.190 0.965 0.570 0.049 0.793 0.239
P1, P2 Polynomial 0.1 t = 0.1 d = 3 0.534 0.732 0.733 0.538 0.552 0.853

*bold rows reveal the best predictor in each phase of the NLSFS method.
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tions were identified as polynomial or RBF types, despite con
sidering the linear kernel function as well. The basis for choosing 
the best combination of predictors for each season was the least 
error in the validation phase according to the assessment criteria.

The best result of the NLSFS method for each season of the 
studied areas showed that the best predictors for the autumn 
rainfall in both sub-basins were the autumn, summer, and 
winter SSVD time series of climate indices; nevertheless, the 
types of climate indices included in the SSVD series were dif
ferent for each sub-basin. The best predictors for spring rainfall 
forecasting in both sub-basins were the SSVD time series of 
autumn SST of the Mediterranean Sea and winter SST of the 
Persian Gulf. However, the best predictors of the winter rainfall 
were different in the two sub-basins; the summer and spring 
SSVD time series of climate indices were the best predictors for 
Seimareh while the summer and autumn SSVD time series of 
climate indices as well as the spring average of Nino 3.4 were the 
best combination of predictors for Karkheh sub-basin.

To evaluate the performance of the traditional SFS method in 
the determination of the best predictors, the SFS method was also 

applied to the initially selected predictors as shown in Tables 2 
and 3. The step-by-step results obtained from this method for the 
spring in the calibration and validation phases are illustrated in 
Tables 6 and 7 for Seimareh and Karkheh sub-basins, respectively.

Comparing the results of spring rainfall forecasting for 
Seimareh in Table 4 (NLSFS) and Table 6 (SFS) indicates that 
the accuracy of the NLSFS results for each of the predictors was 
greater than that of the SFS method, which occurred because 
there was a non-linear relationship between autumn rainfall and 
each of the predictors as demonstrated by the type of optimum 
kernel functions. On this basis, the best combination of the 
predictors identified by these methods were different. Such 
a condition can also be observed for the Karkheh sub-basin 
(Tables 5 and 7).

Comparing the best results of the NLSFS and SFS methods 
(Table 8) revealed that, except for winter in Seimareh, the best 
predictors determined by the SFS for both studied areas in all 
seasons differed from those identified by NLSFS. Furthermore, 
the accuracy of the results achieved from the NLSFS in the 
calibration and validation phases in almost all cases was greater 

Table 6. The step-by-step results of SFS method for spring rainfall forecasting in the Seimareh sub-basin.

Predictors

Calibration Validation

NSE RMSE PCC NSE RMSE PCC

P1 0.349 0.822 0.592 0.083 0.892 0.381
P2* 0.154 0.937 0.417 0.326 0.765 0.695
P3 0.135 0.948 0.368 0.295 0.782 0.592
P4 0.306 0.849 0.558 −0.222 1.030 −0.241
P2,P1 0.380 0.803 0.623 0.267 0.798 0.544
P2,P3 0.186 0.920 0.439 0.439 0.698 0.750
P2,P4 0.308 0.848 0.563 −0.126 0.988 −0.076
P2,P3,P1 0.405 0.786 0.652 0.034 0.915 0.425
P2,P3,P4 0.328 0.835 0.573 −0.023 0.942 0.170

*bold rows reveal the best predictor in each phase of the SFS method.

Table 7. Step-by-step results of the SFS method for spring rainfall forecasting in the Karkheh sub-basin.

Predictors

Calibration Validation

NSE RMSE PCC NSE RMSE PCC

P1* 0.205 0.956 0.453 0.673 0.464 0.856
P2 0.251 0.929 0.501 −0.125 0.862 0.213
P1,P2 0.397 0.833 0.631 0.465 0.594 0.697

*bold rows reveal the best predictor in each phase of the SFS method.

Table 8. The best predictors identified by the NLSFS and SFS methods for the studied areas in all seasons.

Study area Seimareh Karkheh

Season Autumn Winter Spring Autumn Winter Spring

N
LS

FS
 m

et
ho

d Best predictors P1,P3,P4 P1,P3 P1,P2 P1,P3,P2 P3,P1,P4 P1,P2

Best kernel function RBF Polynomial RBF Polynomial Polynomial Polynomial

Calibration NSE 0.527 0.490 0.777 0.657 0.938 0.534

RMSE 0.749 0.679 0.481 0.634 0.253 0.732
PCC 0.735 0.700 0.885 0.84 0.972 0.733

Validation NSE 0.334 0.28 0.494 0.621 0.425 0.538
RMSE 0.415 0.805 0.662 0.477 0.630 0.552
PCC 0.647 0.767 0.746 0.860 0.749 0.853

SF
S 

m
et

ho
d Best predictors P3 P1,P3 P2,P3 P1,P2 P3,P2 P1

Calibration NSE 0.205 0.253 0.186 0.297 0.255 0.205

RMSE 0.970 0.822 0.920 0.908 0.877 0.956
PCC 0.457 0.530 0.439 0.548 0.532 0.453

Validation NSE 0.009 0.293 0.439 0.567 0.396 0.673
RMSE 0.507 0.798 0.698 0.510 0.646 0.464
PCC 0.184 0.746 0.750 0.799 0.856 0.856
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than that of the SFS. According to the best predictors character
ized by the NLSFS, the best set of predictors for autumn and 
spring rainfall forecasting were similar for the two sub-basins, 
although the climate indices included in the SSVD series of 
autumn rainfall predictors were different. But the predictors 
selected by the SFS varied in both sub-basins for all seasons. 
The seasonal rainfall forecasted by the best set of predictors 
identified by the NLSFS and the SFS methods in the calibration 
and validation phases are displayed in Figs 7 and 8 for Seimareh 
and Karkheh, respectively. These graphs also confirm that apply
ing the NLSFS method for predictor recognition resulted in more 
accurate forecasts, especially for peak values, as compared to the 
SFS method for both studied areas.

5 Discussion

The results from both case studies demonstrated non-signifi
cant correlations between the individual climate indices and 
local seasonal rainfall. However, trustworthy correlations at 
the 98% confidence level were achieved by producing ensem
ble series by means of SSVD. Comparing the correlation values 
attained by SVD, our results showed that SSVD is superior to 
SVD by 11% (on average). Our findings agree with the results 
of Nazemosadat and Cordery (2000), Araghinejad et al. (2006), 
and Dezfuli et al. (2010) who reported the negative correlation 
between summer average of SOI and autumn rainfall in the 
west of Iran. They are also consistent with the findings of 
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Figure 7. The time series plots of observed and forecasted rainfalls of Seimareh by NLSFS and SFS methods for (a) autumn, (b) winter, and (c) spring.
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Tabari et al. (2014) demonstrating the effect of spring average 
NAO fluctuations on the autumn rainfall across the northern 
Karkheh basin (Seimareh sub-basin). Additionally, our find
ings are consistent with the results of Modaresi et al. (2016) 
and Sarah et al. (2011) in terms of the effect of autumn SST of 
the Persian Gulf on spring rainfall and streamflow in the 
Karoon and Karkheh basins, respectively. On the other hand, 
our results disagree with Meidani and Araghinejad’s findings, 
in which autumn SST of the Mediterranean Sea was intro
duced as the main winter rainfall trigger in the west of Iran 
(Meidani and Araghinejad 2014). Such an inconsistency could 
be owing to the differences in (i) the duration of observed data 
and (ii) the extent of the studied areas. Thus, it is concluded 
that a change in the temporal and spatial scales of the data and 
study area may result in identifying different predictors.

The results also revealed that the best predictors determined 
using the NLSFS method were different from those selected by the 
SFS in all seasons. The seasonal rainfall forecasted by the NLSFS 

method was dramatically more accurate compared to the SFS. 
This is because of the dominant non-linear relationships that exist 
between the climate indicators and seasonal rainfall in small areas. 
Our NLSFS implementation results confirmed the results of 
Choubin et al. (2017) and Kalra and Ahmad (2012) regarding 
the higher performance of non-linear methods in comparison 
with the linear ones for rainfall forecasting. Furthermore, the 
results agreed with those of Selvi and Huseyinov (2020), who 
indicated that simultaneous implementation of data pre-proces
sing and SFS methods with non-linear modelling algorithms can 
improve feature selection for hydrological forecasting.

The total selected predictors indicated that the SSVD ensemble 
series of seasonal climate indices were the best predictors for 
autumn and winter rainfall, while the combined series of the 
SST of the Mediterranean Sea and the Persian Gulf were the best 
for spring rainfall forecasting. According to the best predictors 
identified by the NLSFS method, the best set of predictors for 
autumn and spring rainfall forecasting were similar for the two 
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Figure 8. Time series plots of observed and forecasted rainfalls of Karkheh by NLSFS and SFS methods for (a) autumn, (b) winter, and (c) spring.
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sub-basins, although the climate indices included in the SSVD 
series of autumn rainfall predictors were different. By contrast, the 
predictors selected by the SFS varied in both sub-basins for all 
seasons.

Based on the results, we conclude that the effects of SSTs of 
the Persian Gulf and the Mediterranean Sea on the sub-basins’ 
rainfall are almost the same even though they are at different 
distances from the sub-basins. By contrast, the influences of the 
ocean–atmospheric climate indices far from the sub-basins were 
found to be different. The reason for such a varied effect could 
be the fluctuations of the climate indices that affect the climate 
variables related to rainfall, such as air pressure, air temperature, 
and wind speed (Aravena et al. 2009, Xie et al. 2019).

The physical mechanism of teleconnections between large- 
scale phenomena and climate variables is not yet well under
stood for different regions in Iran (Choubin et al. 2017). The 
results obtained in the present study, which is based on 
32 years of observed data (1987–2019) from 27 stations, can 
help researchers recognize the physical relationship between 
large-scale climate fluctuations and local variations of the 
climate variables. Because of stochastic patterns of rainfall 
events and random characteristics of rainfall data, the patterns 
identified in this study must not be considered deterministic. 
However, as we evaluated and verified the efficiency of the 
proposed model using data from two case study regions with 
different climate conditions, and the models for each season 
were calibrated by the LOOCV method using the calibration 
data, we strongly believe that the outcomes are trustworthy.

6 Conclusion

This article introduced a new approach for predictor selection 
among large-scale climate indices when they are used for long- 
term rainfall forecasting in small catchments with different cli
mate conditions. The new approach was based on identifying and 
coupling the most effective seasonal climate indices via advanced 
statistical and data-mining methods. The proposed algorithm was 
a new hybrid AI approach that effectively combines a selective 
singular value decomposition method (SSVD) with a non-linear 
SFS method (NLSFS). The new method was demonstrated and 
verified using data from the two sub-basins of the Karkheh basin, 
Iran.

The results showed that the climate indices individually had no 
significant correlation with the seasonal rainfall of the studied 
sub-basins; but applying the SSVD method resulted in recogni
tion of the most effective of the climate indices on the seasonal 
rainfall of each studied area, and we were able to produce an 
ensemble series of them with a trustworthy correlation at the 98% 
confidence level. The results revealed that the effective climate 
indices selected by the SSVD method in the combined series were 
different seasonally and spatially. However, the total predictors 
selected by the NLSFS method indicated that the SSVD combined 
series of seasonal climate indices were the best predictors for 
autumn and winter rainfall, while the combined series of the 
SST of the Mediterranean Sea and the Persian Gulf were the 
best for spring rainfall forecasting. The results of this study 
suggest that when there are diverse weather conditions in a vast 
area, selecting rainfall predictors of climate indices for each 

division with a specific weather condition using the proposed 
algorithm results in more accurate forecasts.

In addition, our results demonstrated the superiority of the 
proposed hybrid algorithm compared to the use of SVD and SFS 
methods in terms of the type of selected predictors and the 
accuracy of the forecast results. Although the proposed method 
was used for input selection for seasonal rainfall forecasting at 
the catchment scale, it can be employed for optimum predictor 
selection in any hydrological forecasting task. As the SSVD 
method combines the data series possessing spatiotemporal 
variation, the application of this method would be limited to 
hydrological predictions in which at least one of the predictors 
or predictand variables have a spatiotemporally varying feature.
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Appendix A

Table A1. The Non-linear sequential forward selection (NLSFS) results for autumn rainfall forecasting in Seimareh sub-basin.

Predictors Best kernel Best gamma Best parameters

Calibration Validation

NSE RMSE PCC NSE RMSE PCC

P1* RBF 5.7 S2 = 10 0.392 0.837 0.629 0.372 0.403 0.624
P2 RBF 8.1 S2 = 5 0.449 0.796 0.675 −0.100 0.534 0.072
P3 RBF 10 S2 = 20 0.226 0.958 0.480 0.042 0.498 0.209
P4 Polynomial 10 t = 2 d = 4 0.261 0.935 0.511 0.113 0.479 0.622
P1,P2 RBF 4.4 S2 = 5 0.554 0.717 0.758 0.217 0.451 0.477
P1,P3 RBF 7.6 S2 = 20 0.470 0.782 0.696 0.360 0.407 0.645
P1,P4 RBF 9.4 S2 = 20 0.477 0.777 0.699 0.337 0.414 0.639
P1,P3,P2 RBF 9.5 S2 = 10 0.599 0.690 0.782 0.259 0.438 0.538
P1,P3,P4 RBF 10 S2 = 25 0.527 0.749 0.735 0.334 0.415 0.647

*bold rows reveal the best predictor in each phase of the NLSFS method.

Table A2. The Non-linear sequential forward selection (NLSFS) results for winter rainfall forecasting in Seimareh sub-basin.

Predictors Best kernel Best gamma Best parameters

Calibration Validation

NSE RMSE PCC NSE RMSE PCC

P1* Polynomial 10 t = 2 d = 3 0.270 0.812 0.519 0.198 0.849 0.677
P2 RBF 10 S2 = 5 0.280 0.806 0.530 −0.039 0.967 0.445
P3 Polynomial 10 t = 1.5 d = 1 0.199 0.850 0.447 −0.104 0.996 0.461
P1,P2 RBF 2.1 S2 = 5 0.297 0.797 0.551 0.055 0.922 0.558
P1,P3 Polynomial 10 t = 2 d = 3 0.490 0.679 0.700 0.280 0.805 0.767
P1,P3,P2 Polynomial 0.3 t = 1.1 d = 1 0.304 0.793 0.552 0.074 0.913 0.664

*bold rows reveal the best predictor in each phase of the NLSFS method.
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Table A4. The Non-linear sequential forward selection (NLSFS) results for winter rainfall forecasting in Karkheh sub-basin.

Predictors Best kernel Best gamma Best parameters

Calibration Validation

NSE RMSE PCC NSE RMSE PCC

P1 Polynomial 10 t = 1.7 d = 1 0.288 0.857 0.537 0.177 0.753 0.679
P2 Polynomial 10 t = 1.5 d = 1 0.259 0.875 0.509 0.015 0.824 0.724
P3* RBF 10 S2 = 5 0.212 0.902 0.462 0.224 0.732 0.691
P4 Polynomial 10 t = 2 d = 4 0.204 0.907 0.451 −0.061 0.855 0.756
P3,P1 Polynomial 3.4 t = 2 d = 3 0.351 0.819 0.593 0.289 0.700 0.759
P3,P2 Polynomial 10 t = 1.2 d = 1 0.283 0.861 0.532 0.180 0.752 0.856
P3,P4 Polynomial 0.4 t = 1.3 d = 5 0.843 0.403 0.923 0.248 0.720 0.691
P3,P1,P2 Polynomial 0.5 t = 0.9 d = 1 0.321 0.837 0.567 0.217 0.735 0.819
P3, P1, P4 Polynomial 0.4 t = 2 d = 4 0.938 0.253 0.972 0.425 0.630 0.749
P3,P1,P4,P2 Polynomial 2 t = 1.2 d = 1 0.322 0.837 0.567 0.213 0.737 0.810

*bold rows reveal the best predictor in each phase of the NLSFS method.
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Figure A1. The Pearson correlation coefficient (PCC) of autumn rainfall with seasonal average Sea Surface Temperature (SST) of Mediterranean Sea (MEDIT SST) and 
Persian Gulf (PERG SST) and their combination series by Selective singular value decomposition (SSVD) method (MEDI SSVD and PERG SSVD) for (a) Seimareh and (b) 
Karkheh sub-basins.

Table A3. The Non-linear sequential forward selection (NLSFS) results for autumn rainfall forecasting in Karkheh sub-basin.

Predictors Best kernel Best gamma Best parameters

Calibration Validation

NSE RMSE PCC NSE RMSE PCC

P1* Polynomial 0.2 t = 1.1 d = 5 0.335 0.863 0.585 0.332 0.633 0.667
P2 Polynomial 0.2 t = 1.8 d = 5 0.492 0.754 0.708 0.487 0.555 0.749
P3 Polynomial 0.6 t = 0.1 d = 2 0.261 0.916 0.541 0.258 0.668 0.532
P4 RBF 3.5 S2 = 100 0.177 0.967 0.508 0.177 0.703 0.564
P1,P2 Polynomial 0.4 t = 0.9 d = 3 0.373 0.857 0.613 0.370 0.615 0.741
P1,P3 Polynomial 0.2 t = 0.3 d = 2 0.592 0.692 0.804 0.577 0.504 0.790
P1,P4 RBF 2.6 S2 = 15 0.386 0.848 0.636 0.386 0.607 0.789
P1,P3,P2 Polynomial 0.1 t = 0.7 d = 2 0.657 0.634 0.840 0.621 0.477 0.860
P1,P3,P4 RBF 2.8 S2 = 15 0.525 0.746 0.744 0.524 0.535 0.835
P1,P3,P2,P4 RBF 2.9 S2 = 20 0.535 0.738 0.752 0.535 0.529 0.879

*bold rows reveal the best predictor in each phase of the NLSFS method.
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Figure A2. The Pearson correlation coefficient (PCC) of winter rainfall with seasonal average SST of Mediterranean Sea (MEDIT SST) and Persian Gulf (PERG SST) and 
their combination series by SSVD method (MEDI SSVD and PERG SSVD) for (a) Seimareh and (b) Karkheh sub-basins.
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