Show simple item record

dc.contributor.authorShakhmurov, Veli
dc.date.accessioned2023-05-24T06:17:08Z
dc.date.available2023-05-24T06:17:08Z
dc.date.issued2022
dc.identifier.citationShakhmurov, V. (2022). Kinetic maximal LP regularity for nonlocal Kolmogorov equation and application. 7. Uluslararası Erciyes Bilimsel Araştırmalar Kongresi.en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12566/1586
dc.description.abstractWe study the linear and nonlinear nonlocal abstract Kolmogorov equations. The equations includes the abstract operator A in a Banach space E. Here,the kinetic maximal L2-regularity for the linear equat¨on is derived in terms of E-valued Sobolev spaces. Moreover, we show that the solution u is also regular in time and space variables when u is assumed to have a certain amount of regularity in velocity. Finally, the kinetic maximal L2-regularity for the linear equation can be used to obtain local existence and uniqueness of solutions to a quasilinear nonlocal Kolmogorov type kinetic equation.en_US
dc.description.sponsorshipNo sponsoren_US
dc.language.isoengen_US
dc.publisher7. Uluslararası Erciyes Bilimsel Araştırmalar Kongresitr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleKinetic maximal LP regularity for nonlocal Kolmogorov equation and applicationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.relation.publicationcategoryInternational publicationen_US
dc.contributor.orcid0000-0002-7685-4913 [Shakhmurov, Veli]
dc.contributor.abuauthorShakhmurov, Veli
dc.contributor.yokid126037 [Shakhmurov, Veli]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record