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Abstract—This paper presents a new tree-based model, namely

Fuzzy Random Forest (FRF), for one month ahead Standardized

Precipitation Evapotranspiration Index (SPEI) classification and

prediction with a noteworthy application in ungauged catchments.

The proposed FRF model uses global SPEI dataset as the meteo-

rological drought quantifier and applies a fuzzy inference system to

extract fuzzified and crisp SPEI values for an ungauged catchment.

The evolved crisp series is then transformed into the polynomial

label vector of extremely wet, wet, near normal, dry, and extremely

dry categories. In the end, the state-of-the-art random forest algo-

rithm was used to classify and predict the label vector using the

lagged SPEI series of the selected global grid points. To demon-

strate the development and verification process of the FRF model,

the global SPEI-6 values for the period of 1961–2015 were

retrieved from four global grid points around the Central Antalya

Basin, Turkey. The new model was trained and validated using

70% and 30% of the data sets, respectively. The performance of the

new model was examined in terms of total accuracy, misclassifi-

cation, and Kappa statistics and cross-validated with the fuzzy

decision tree model developed as the benchmark in this study. The

results showed the promising performance of the FRF for drought

classification and prediction with outstanding efficiency for extre-

mely wet and dry events classification. According to the Kappa

statistic, the proposed FRF model is 25% more accurate than the

benchmark FDT model.

Keywords: Drought, SPEI, Classification models, Decision

tree, Fuzzification, Random forest.

1. Introduction

Drought is a climatological extreme that unde-

sirably affects human life through limited access to

freshwater. It makes significant impacts on the

quantity and quality of water resources at local and

regional scales which might yield famine and

socioeconomic crisis (Danandeh Mehr et al. 2020b).

To measure drought severity, the corresponding

indices are calculated using a set of certain meteo-

rological, agricultural, hydrological, or even

socioeconomic information. From a meteorological

drought perspective, variables such as precipitation

and temperature are commonly used to calculate the

drought index. There are several meteorological

drought indices, such as the standardized precipita-

tion index (SPI; McKee et al. 1993), Palmer’s

drought severity index (PDSI; Palmer 1965), drought

area index (DAI; Bhalme and Mooley 1980), and the

most recently developed standardized precipitation

evapotranspiration index (SPEI; Vicente-Serrano

et al. 2010). Historical precipitation data is used to

calculate SPI and ADI, whereas temperature is also

required to calculate PDSI and SPEI. The time scale

of an index is also important in the evaluation of

drought impacts. For instance, the SPEI with a

monthly scale (i.e., SPIE-1) is a criterion indicating

the monthly variation of wet and dry spells with

respect to the long-term mean precipitation and

evapotranspiration in a region. The choice of the time

scale, in practice, depends on the aim of the study.

Despite being a meteorological index, use of short

time scales (1-, 3- or 6-month) is suggested for

meteorological and agriculture drought analysis,

while the longer time scales, such as -9 or -12 can be

used for hydrological drought monitoring (Caloiero

and Veltri 2019; Alsafadi et al. 2020).

Because of the importance of sustainable water

supply for human life, many studies have addressed

both natural and anthropogenic climate change

impacts on water resources (e.g., Maghrebi et al.
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2020; Danandeh Mehr et al. 2020a). Several studies

have also attempted to improve the accuracy of

drought prediction/forecasting models (e.g., Pongracz

et al. 1999; Bogardi et al. 2004; Danandeh Mehr et al.

2020b). To this end, the capability of different

machine learning (ML) techniques such as artificial

neural networks (ANN; e.g., Mishra et al. 2007;

Morid et al. 2007; Barua et al. 2012; Rezaeian-Zadeh

and Tabari 2012; Nair et al. 2018), support vector

machine (SVM; e.g., Belayneh and Adamowski

2012), fuzzy logic (FL; Pesti et al. 1996; Pongracz

et al. 1999; Bogardi et al. 2004; Keskin et al. 2009;

Ozger et al. 2011; Huang et al. 2015; Abdourahamane

and Acar 2019) and genetic programming (Mehr

et al. 2014; Abbasi et al. 2019; Danandeh Mehr et al.

2021) were extensively studied.

Focusing on the FL-based drought forecasting

models, our review showed that a few applications

exist in the relevant literature. For instance, in a

seminal paper, Pesti et al. (1996) presented a fuzzy-

based model to forecast regional drought in New

Mexico using atmospheric pressure patterns of the

Western United States. To create a fuzzy model, tri-

angular function membership was applied, and 16

linguistic fuzzy rules were derived to make a rela-

tionship between drought characteristics and

atmospheric pressure patterns. Pangracz et al. (1999)

developed a fuzzy rule-based model to forecast

regional drought in terms of Palmer Modified

Drought Index (PMDI) for Nebraska. Different large-

scale atmospheric circulation patterns were used as

the PMDI predictors. A comparison was performed

between the observed and FL-predicted values. The

authors showed that the FL can regress observed and

multivariate estimated PMDI time series for South-

Central Nebraska. Huang et al. (2015) developed an

Integrated Drought Index that combines the meteo-

rological, hydrological, and agricultural factors by

using fuzzy set theory. The study area includes the

Yellow River, the second largest river in China. The

results showed that the developed drought index with

applying fuzzy set theory is reliable and can be used

for integrated drought studies. More recently,

Abdourahamane and Acar (2019) developed a fuzzy-

rule based model to forecast 3-month SPI of Western

Niger. The southern oscillation index, sea surface

temperature, relative humidity, and sea level pressure

were used on the model as the SPI predictors. Fuzzy

membership functions and linguistic rules were

derived considering expert knowledge and literature

survey. Statistical analysis showed that the developed

fuzzy-based model may provide accurate drought

forecasts.

Despite the inclusion of human knowledge,

inadequate accuracy of in FL-based models for long

lead time forecast was also reported (Mehr et al.

2014). To overcome the problem and enhance fore-

casting accuracy, hybrid ML models that typically are

attained through the combination of different ML

techniques were suggested (e.g., Shirmohammadi

et al. 2013; Deo et al. 2017; Kisi et al. 2019 among

others). For example, Ozger et al. (2011) developed a

wavelet-fuzzy logic (WFL) model to forecast drought

in different climate zones of Texas using several

meteorological parameters as predictors. The Palmer

Drought Severity Index was used as the predictand on

the developed model. Özger et al. (2012) presented

three different drought forecasting models including

WFL, ANN, and wavelet-ANN. ENSO and previous

PMDI observations were used to forecast long lead

drought in Texas. The comparisons of the developed

model showed that the hybrid WFL model is superior

to other models to forecast regional drought.

A recent review study conducted by Fung et al.

(2019) showed that most of the existing drought

forecasting studies have focused on either regression

analysis between climate indicators and drought

pattern or time series modeling of drought indices

(Farokhnia et al. 2011; Özger et al. 2012; Danandeh

Mehr et al. 2014; Belayneh and Adamowski 2012;

Nguyen et al. 2015; Mokhtarzad et al. 2019;

Abdourahamane and Acar 2019; Mehdizadeh et al.

2020; Danandeh Mehr et al. 2021). Only a few

studies have attempted to model and predict drought

classes. For example, Chiang and Tsai (2013)

designed a two-stage SVM for reservoir drought

prediction and showed that classification accuracy of

the two-stage SVM is higher than standalone SVM,

ANN, Maximum likelihood, and Bayes classifiers.

Nourani and Molajou (2017) proposed a hybrid

decision tree-association rules model to discover the

relationship among SPI-based drought events in

Tabriz City and Kermanshah City and sea surface

temperature of the Black Sea, the Mediterranean Sea,
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and the Red Sea. The state-of-the-art random forest

(RF) technique was applied for SPI time series

forecasting by Chen et al. (2012). The authors also

applied RF, for the first time, to forecast the number

of dry days in four cities in China. The results

demonstrated that the RF is more efficient than the

classic autoregressive integrated moving average

model for both short- and long-term drought classi-

fication. Park et al. (2016) applied three ML models

including RF, boosted regression trees, and Cubist for

SPI time series modeling based on remote sensing

meteorological data. Park et al. (2018) also applied

RF for short-term drought forecasting in the East Asia

region using satellite-based climatic data. The study

showed that the RF can capture the sudden change in

drought conditions when Madden–Julian oscillations

is used as a feature for drought prediction.

The aforementioned studies have proven the

robustness of RF in drought forecasting using

regression analysis. The promising role of RF for

probabilistic nowcasting of low-visibility procedure

states was also reported in a recent study by Dietz

et al. (2019). Inspired by the high performance of RF

for regression tasks, the main objectives of this study

are (i) to explore the efficiency of RF for drought

classification and (ii) for the first time, to develop and

apply a novel hybrid fuzzy random forest (hereafter

FRF) for draught classification, 1-month in-advance.

As RF is from the classic decision tree (DT) family, a

Fuzzy-DT (hereafter FDT) model was also developed

in this study as the benchmark. To the best of the

author’s knowledge, the efficiency of FRF and FDF

for SPEI classification/prediction has never been

explored yet.

2. Study area and data exploration

Antalya province with a population of more than

two million is located on the Mediterranean coast of

south-west Turkey, between the Taurus Mountains

and the Mediterranean Sea. The Mediterranean cli-

mate prevails in the province with hot and dry

summers and rainy springs and winters. Its tempera-

ture ranges from2 4.3 �C to 43.4 �C during a year. It

is very rare to cold down to 10� in winter. The

average precipitation is 1070 mm per square meter.

To obtain local monthly SPEI series around the

Central Antalya Basin (CAB), the global SPEI data-

base, which offers long-time SPEI series at a global

scale with a 0.5 degrees spatial resolution was used in

this study. The database has a multi-scale character,

providing SPEI timescales between 1 and 48 months.

The historical SPEI-6 data in the period between

January 1961 and December 2015 from four global

grid points (i.e., G1, G2, G3, G4) located in the study

area were used (Fig. 1) in the present study. For

details on the calculations of SPEI in different time

scales are referred to Vicente-Serrano et al. (2010)

but here, it is worth mentioning that SPEI-6 reflects

rainfall and temperature conditions over the past

6-month period. Danandeh Mehr and Vaheddoost

(2020) reported that the index also is suitable for

monitor and analyze drought under climate change.

Figure 2 depicts the time distribution of SPEI-6

series at each grid point attained for the period of

1961–2015. The statistical characteristics of the ser-

ies were summarized in Table 1. The fuzzy inference

system (FIS) based on 81 fuzzy rules exclusively

defined by experts (is explained later in Methodology

Section) was applied using these SPEI-6 series to

produce a reliable set of SPEI-6 for the CAB.

3. Methods

3.1. Overview of Decision Tree (DT)

DT, conceptually, is an if–then–else algorithm

that can be used to predict a result based on historical

experiments. DT is a supervised ML algorithm with a

tree-like structure where the tree has branches,

leaves, and the root node at the top. In general, the

process of prediction (deciding) starts with exploring

the existing attributes (input vectors) in order to split

the data into subsets. In other words, the data is

separated according to a series of questions relevant

to the interrelations among the attributes and a given

label. Each subset represents a certain class of data

available in the associated attribute. For example, if

outlook, humidity, and wind are considered as the

attributes to predict the temperature of a day, the

outlook vector can be divided into subsets of sunny,

overcast, and rainy. The process of subdividing the
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dataset into smaller and smaller subsets of the same

or related type is continued like the divide-and-

conquer algorithm of sorts until a subset becomes

pure which means the branch is simple enough to

decide directly. The result is a multi-branched tree

that is used to predict future experiments. To this end,

the modeler looks at which subset that the new

experiments fall into and then uses the dominant class

in that subset.

To characterize impurity in a data set, DT applies

entropy theory and fits a classification tree for the

data given by the primary information of each class.

Considering a binary classification problem with

label L which consists merely of yes and no samples,

the entropy of L is expressed as below.

EntropyðLÞ ¼ �pyðlog2pyÞ � pnðlog2pnÞ ð1Þ

where py and pn are the proportions of yes and no

samples, respectively.

The DT corresponding to the SPEI classification

described in Sect. 2 was illustrated in Fig. 3. The tree

starts with the root node question of splitting SPEI

into positive (yes) and negative (no) classes. Then,

the yes answers go the one way (right hand) and the

no goes to the other way (left hand). The yes/no

questions are continued until we reach the leaves of

the tree that figures out a pure meteorological drought

condition.

3.2. Overview of Random Forest (RF)

RF (Breiman 2001) method is an ensemble

learning algorithm that aims, firstly, to build small

decision trees with few features each of which is

computationally feasible and, secondly, to combine

these constructed trees to form a strong learning

process. In this learning process, for a given input

vector, computation is carried over each of the trees

Figure 1
Location of the closest global grid points (red points) to the CAB (yellow polygon) in Turkey

A. D. Mehr et al. Pure Appl. Geophys.



in the forest. Once the classification model is

obtained from each tree, the method chooses the

most common class outcome. The error rate basically

depends on the correlation between any two trees as

well as the strength of individual trees in the forest. If

the forest includes individual trees with a low error

rate, it will decrease the overall error rate of the

forest. Also, less correlation among the trees gives

rise to a lower error rate for the overall process.

RF method is relatively a fast method compared

to other classifier methods. In the forest, each tree is

constructed using a different bootstrap sample. For

the construction of a tree T, some portion of the

original data is not taken into consideration and this

left-out data part (so-called out-of-band (OOB) data)

is used for testing purposes for this particular tree T.

RF performance mainly depends on the number of

ancillary data in each random tree and the number of

trees in the forest (Ghorbani et al. 2020). The increase

in the number of trees does not create overfitting

problems. On the other side, using too many trees

may not contribute to the classification accuracy.

These parameters are typically optimized by an

iterative method. As a result, the authors use 100

many trees when running the random forest method.

Moreover, the maximal tree depth is kept as 15. For

Figure 2
SPEI-6 series (classification features) at the grid points nearby the study area

Table 1

Statistical characteristics of SPEI time series used in the study

Grid point Latitude Longitude Min Mean Max Standard deviation Skewness

G1 36.75 30.75 - 2.483 0.03 2.655 1.05 0.025

G2 36.75 31.25 - 2.473 0.01 2.165 1.03 - 0.085

G3 37.25 30.75 - 2.502 0.037 2.657 1.00 - 0.008

G4 37.25 31.25 - 2.591 - 0.017 2.901 1.02 0.065

A Novel Fuzzy Random Forest Model for Meteorological Drought Classification



details about the fundamentals of RF and its appli-

cations in water engineering, the interested reader is

referred to the comprehensive review paper that has

recently been provided by Tyralis et al. (2019).

3.3. Overview of Fuzzy Inference System

Fuzzy logic (Zadeh 1965) is a soft computing

technique that attempts to mathematically emulate

human reasoning to solve complex problems. It

allows modelers to employ human knowledge and

decision-making rules to resolve the systems where

an explicit analytical-process model is not available

(Carr and Shearer 2007). The fuzzy logic system

comprises three main elements to transform descrip-

tive variables into a scalar response variable. These

are input/output membership functions that can take

any value in the range between 0 and 1, fuzzy rules,

and an inference engine (Abdourahamane and Acar

2019). In a conventional implementation approach,

first, a degree of membership (characteristic) is

defined for each variable and then a set of fuzzy

rules is created by an expert(s) to define the existing

relationship between individual input and output

variables. In the last step, the resulting fuzzy output

set is transformed into a numerical (crisp) set

throughout a defuzzification technique. In the fol-

lowing, the fuzzy rule-based methodology will be

used to the present case is described in a step-by-step

manner. For more details about fuzzy systems and its

applications in water resources engineering, the

interested reader is referred to Tayfur (2014).

3.4. The Proposed Fuzzy Random Forest (FRF)

Model

As illustrated in Fig. 4, the FRF modeling process

for meteorological drought classification and predic-

tion is commenced by the collection of a set of input

vectors from the global SPEI repository. We selected

SPEI-6 from four grid points (G1, G2, G3, and G4) so

that they are closest to the study area. In the next step,

the target SPEI-6 for the study area (label) is created

through the FIS illustrated in Fig. 6b. Three fuzzy

linguistic terms including low, medium, and high

were defined for all the inputs. Regarding the output,

five fuzzy linguistic terms, namely extremely wet

(EW), extremely dry (ED), dry (D), near normal

(NN), and wet (W), were also defined in our

implementation. Inasmuch as no sharp distinction

Figure 3
The perfect DT classifier for meteorological drought classification based on SPEI series at a single station

A. D. Mehr et al. Pure Appl. Geophys.



usually exists between low, medium, and high

drought, Gaussian membership function was used to

assign a degree of membership for each sample of the

input and output SPEI vectors.

Figure 5 compares the classical SPEI sets (Fig. 5-

left) of low (SPEI\ -1), medium (– 1 B SPEI B 1),

and high (SPEI[ 1) with the fuzzified SPEI set used

in the present study. If one conventionally classifies

(evaluates the degree of membership), for example,

the SPEI value 0.5, they get degree 1 for set medium

and 0 for sets low and high. However, the corre-

sponding classes (degrees) can be to some extent low

(0.04), medium (0.23), and high (0.55) (Fig. 5right)

in our FIS which is closer to expert reasoning and

thus more realistic.

Since the FIS used in our use case has four input

vectors and each of which has three fuzzy linguistic

terms, 34 (or 81) fuzzy rules (complete rule bases)

have been defined by the authors. The rules having

the form of ‘‘IF condition THEN conclusion’’

inserted among the series of global SPEI vectors

and a fuzzy set was created with respect to their

degree of membership. Examples of the rules

describing the relation between input and output

linguistic variables are given below:

Figure 4
Methodology flowchart of the construction of the FRF model
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• If G1 is high & G2 is high & G3 is high & G4 is

high, then SPEI in CBA is EW.

• If G1 is low & G2 is low & G3 is low & G4 is low,

then SPEI in CBA is ED.

• If G1 is high & G2 is high & G3 is low & G4 is

low, then SPEI in CBA is NN.

• If G1 is low & G2 is low & G3 is high & G4 is

high, then SPEI in CBA is NN.

• If G1 is high & G2 is high & G3 is high & G4 is

medium, then SPEI in CBA is EW.

• If G1 is low & G2 is low & G3 is low & G4 is

medium, then SPEI in CBA is ED.

• If G1 is high & G2 is high & G3 is high & G4 is

low, then SPEI in CBA is W.

• If G1 is low & G2 is low & G3 is low & G4 is

high, then SPEI in CBA is D.

The last steps in the FIS is the defuzzification of

our output fuzzy set (Fig. 6) followed by categoriza-

tion of the attained crisp vector. During

defuzzification, the output fuzzy sets for each rule

Figure 5
The classic (left) and fuzzy sets (right)

Figure 6
The Gaussian membership functions defined for output fuzzy sets attained based on the running of 81 rules in FIS

A. D. Mehr et al. Pure Appl. Geophys.



are aggregated to a single output fuzzy set and then

each fuzzy linguistic output variable is converted to a

crisp value. To this end, we used the most prevalent

and physically appealing centroid (Center of Area-

CoA) method (Ross 2004).

The resulting series is a vector of 659 samples of

scalar SPEI-6 values that varies in the range [-2.03,

1.97]. Following the SPEI thresholds proposed by

Danandeh Mehr et al. (2020a), we categorized the

resulting series in five classes as tabulated in Table 2.

The absolute count and fractions of each class across

the CAB were also presented in the table.

Like other ML models, features and correspond-

ing label are split into training and validations sets in

our FRF model. The first 70% of the data were used

to train the models. As previously mentioned, the

classification/prediction algorithms used in this study

is RF. However, a baseline DT is used for cross-

validation task. Various statistical measures are used

to evaluate the performance of the evolved FRF and

FDT models.

3.5. Performance Evaluation Criteria

As the evolved models were developed for

polynomial classification and forecasting tasks, their

performance is assessed using confusion matrix and

different Boolean statistics namely, total accuracy

(TA), Kappa (KA; Landis and Koch 1977), recall

(RE), and classification error (CE) in this study. The

TA (Eq. 2) is the average number of correctly

classified events. The kappa (Eq. 3) is a metric that

compares an observed accuracy with an expected

accuracy (random chance). It generally thought to be

a more robust measure than simple percentage correct

prediction calculation since it considers the correct

prediction occurring by chance. The CE (Eq. 4) is the

misclassification rate which equals 0.0 for a perfect

classifier.

TA ¼ TPþ TN

M
� 100 ð2Þ

KA ¼ OAG þ EAG

1� EAG
ð3Þ

CE ¼ 100� AC ð4Þ

RE ¼ TP

TP þ FN
� 100 ð5Þ

where TP (true positive predictions) and TN (true

negative predictions) are the drought conditions

classified correctly as classified in Table 2. FN is

false negative predictions, and M is the total number

of samples. The OAG and EAG are observed agreement

and expected agreement, respectively. The former is

defined as the number of samples that were classified

correctly throughout the entire confusion matrix. The

latter is the accuracy that any random classifier would

be expected to achieve based on the confusion matrix.

4. Results

In this study, meteorological drought events in the

CAB (see Table 2) is predicted over the lead time of

1-month which will be beneficial for early warning

and taking preventive measures. The corresponding

tree-based decision models are created based on the

spatiotemporal relationship between SPEI-6 values of

the nearby global grid points and the drought class in

the CAB attained through FIS. Like other ML tech-

niques in the first step, the entire input/output datasets

at each scenario was divided into two subsets of

training (* 70%) and validation (* 30%) periods.

Then, DT and RF models were trained and validated

using the corresponding data sets.

The evolved benchmark FDT model was illus-

trated in Fig. 7. In this tree, the most important

variable to split on is G2. Inasmuch as the tree is

created by the process of recursive partitioning, G2

followed by G3 and G5 are the dominant predictors

that bubbled at the top nodes. It is seen that the

samples were split regarding the threshold of -0.161.

Table 2

Absolute count and fractions of meteorological drought across the

Central Antalya Basin

Drought class Acronym Absolute count Fraction

Wet W 146 22.2

Near normal NN 151 22.9

Dry D 143 21.7

Extremely wet EW 116 17.6

Extremely dry ED 103 15.6
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Tables 3 presented the confusion matrix, i.e., the

matrix of outputs, of the FDT model at training and

validation sets. Each row in the table shows which

drought event was predicted by the model. The col-

umns are the ground truth indicating the number of

events in each class. The values lying across the main

diagonal shows the success of the model at each

class. The summation of these values creates the

numerator of Eq. (2) needed for AC calculations. The

total number of events in the training and validation

periods, M, were also given in the table that helps the

reader to calculate all the performance criteria

described in Sect. 3.5. The overall accuracy in the

training and validation periods are 58.33% and

57.59%, respectively which were made up from

accuracies of each drought class.

From the environmental management perspective,

extreme weather conditions are more important to be

precisely predicted. Indeed, EW and ED events may

influence both biotic and abiotic factors more seri-

ously. Hence, using the associated outcomes in

Table 3 (columns 5 and 6), we calculated the classes

recall recognizing how often the FDT correctly pre-

dicts the extreme events. Considering EW and ED

outcomes in the training period, the model is 71.95%

and 72.60% precise, respectively.

RE ¼
59

18þ3þ2þ59þ0
� 100 ¼ 71:95forEW

53
5þ5þ9þ1þ53

� 100 ¼ 72:60forED

�
ð6Þ

Looking at the validation period, the corre-

sponding RE is 76.47% and 63.33%, respectively,

which indicates the evolved FDT is not a highly

reliable classifier, particularly for ED events.

To increase classification and forecasting accu-

racy, several RF models were developed, and the

accuracy results of the best classifier were presented

in Table 4. It’s worth mentioning that the required

modeling parameters were slightly altered to find

their optimum values. The number of random trees

was initialized by 100 and then increased to 1000.

The maximal depth was limited to 15 to avoid

overtraining. The classification matrices of the

evolved FRF were tabulated in Table 4. Returning to

Figure 7
The DT model evolved for 1-month ahead drought classification in the CAB, Turkey

Table 3

Prediction results of FDT model

True W True NN True D True EW True ED

Training samples (M = 468)

Pred. W 61 26 9 18 5

Pred. NN 14 40 12 3 5

Pred. D 10 23 63 2 9

Pred. EW 19 11 0 59 1

Pred. ED 0 7 18 0 53

True W True NN True D True EW True ED

Validation samples (M = 191)

Pred. W 18 12 7 4 2

Pred. NN 6 20 2 0 1

Pred. D 5 6 27 4 7

Pred. EW 10 5 0 26 1

Pred. ED 3 1 5 0 19

A. D. Mehr et al. Pure Appl. Geophys.



the FDT results, it must be noted that a significant

drop in the model performance was observed when

the maximum depth of the tree could be larger than

10 which indicates an overtrading situation in FDT.

However, in FRF, the model efficiency in both

training and validation periods progressively

increased up to 15 levels. The overall accuracy in the

training and validation periods is 68.59% and

71.73%, respectively that shows significant

improvement over the FDT model.

Like FDT evaluation, the recall index for ED and

EW classes were calculated to recognize how often

the FRF correctly predicts the extreme events. The

results exhibited that the model is 80.49% and

84.93% precise, respectively. Looking at the recall in

the validation period, the model is 88.23% and

90.00% precise, respectively, which indicates the

evolved FRF is a highly reliable classifier for both

ED and EW classes. It is seen from the table that

from 73 ED events in the training period, the RF truly

predicted 62 events. False predictions include 10 D

and one NN so that no ED event was predicted as W

or EW events. Regarding the validation outcomes,

the model can predict 27 ED events out of 30. As the

remaining three events were classified as the D or NN

cases, the robust performance of the model for ED

classification is concluded.

To get a sense of how well the evolved FRF works

in practice, cross-validation with the evolved FDT

model was accomplished in terms of overall model

accuracy, misclassification rate, and Kappa statistics

(Table 5). It is seen from the table that the RF is

superior to the FDT in terms of all the performance

measures. In both training and validation datasets, the

misclassification rate of the RF is approximately less

than 30% that approximately shows a 25% and 30%

reduction in the misclassification rate of the FDT.

According to KA statistic in the training dataset,

which allows comparing the classifiers based on the

number of drought events along with the number of

instances that correctly labeled at each class, the FRF

satisfactorily classified the events 25% more accurate

than FDT. It is also 34% more precise in the vali-

dation period. Following Landis and Koch (1997)

who considers KA in the range [0.21–0.40] as fair,

[0.41–0.60] as moderate, and [0.61–0.80] as sub-

stantial classification, the FDT and FRF models are

respectively interpreted as moderate and substantially

satisfactory classifiers in this study.

5. Discussion

Figure 8 displays the count of ground truth (ob-

served) and predicted drought classes in the training

and validation periods. The figure reveals that the

CAB has experienced 104 (42) W, 108 (42) NN, 102

(41) D, 83 (33) EW, and 71(32) ED months during

the training (validation) period. The applied FIS,

naturally classified most of the observed samples as

NN, followed by W and D events in both training and

validation periods. Regarding the extreme event, the

basin has faced more EW events than ED (e.g., 83 vs.

71 in the training period). However, the number of

ED months is so close to that of EW (32 vs. 33) in the

Table 4

Prediction results of FRF model

True W True NN True D True EW True ED

Training samples (M = 468)

Pred. W 66 13 7 12 0

Pred. NN 8 60 10 1 1

Pred. D 9 17 67 3 10

Pred. EW 20 11 0 66 0

Pred. ED 1 6 18 0 62

True W True NN True D True EW True ED

Validation samples (M = 191)

Pred. W 29 8 4 3 0

Pred. NN 5 25 3 1 1

Pred. D 3 7 26 0 2

Pred. EW 5 3 0 30 0

Pred. ED 0 1 8 0 27

Table 5

Performance results of the FDT and FRF models in the training

and validation periods

Model Training Validation

TA (%) CE (%) KA TA (%) CE (%) KA

FDT 58.97 41.03 0.49 57.59 42.41 0.47

FRF 68.59 31.41 0.61 71.73 28.27 0.65
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validation period that indicates an increasing trend

for ED events in the most recent years which could be

considered as the signal for climate variability in the

basin. Both FDT and FRF overclassified extreme

events in the training period with a slight superior

performance of the FDT over FRF. However, the

FRF shows better performance in the validation

period. By contrast, both the models underestimate

the NN conditions, but the RF is still superior to its

counterpart. The FDT predictions are very poor in

both training and validating periods. The FRF exhi-

bits a greater class precision. Despite the higher total

accuracy of the FRF, the W events were perfectly

classified by both FRF and FDT in the validation

period.

6. Conclusion

Drought prediction is known as a challenging task

owing to the extremely stochastic feature of drought

classification indices. While most of the preceding

studies attempted to model the temporal variation of

drought indices using station-based historical indi-

cators, this study for the first time, presented a new

and robust classifier, called FRF, with of paramount

importance application in ungauged catchments. The

proposed FRF model is a supervised classifier that

uses the global drought information, prepared based

on multiple satellite-, and model-based meteorologi-

cal data sets, for a 1-month ahead classification and

prediction of SPEI drought in the CAB, Turkey. The

overall performance of the new model was assessed

in terms of TA, KA, and CE statistics, and its class

precision distilled using the matrix of the outputs. In

addition, the classification accuracy of the FRF was

cross validated comparing with a baseline model,

FDT. The results showed that FRF can perfectly

handle the polynomial target vector with specific

superiority over FDT in the classification of ED

events. Despite dealing with the highly stochastic

features, the maximum overall misclassification on

the validation set was approximately 28% with a KA

Figure 8
The observed and classified drought conditions in a training and b validation period

A. D. Mehr et al. Pure Appl. Geophys.



value of 0.65 that indicates the FRF as a substantially

desirable classifier.

From the modeling perspective, when a nonlinear

relationship is a predominant factor among the data

sets, the results showed that FDT fits the data inef-

ficiently. The ensemble FRF algorithm combines

multiple trees through the bagging, i.e., bootstrapped

aggregation, to increase the accuracy of FDT. It is

worth mentioning that the trees themselves are

independent. The present study was limited to a

1-month ahead classification of the SPEI-6 from a

single global drought repository. The design of

drought classification models with higher lead times

would be beneficial for planning mitigation strate-

gies. To diminish the inherent uncertainties available

in global data, the use of drought indices from other

global drought repositories such as the Global Inte-

grated Drought Monitoring and Prediction System

(Hao et al. 2014) and Climate of the Carpathian

region project-CARPATCLIM (2019) would be

instrumental in reducing drought impacts, particu-

larly in ungauged catchments.
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