STABILIZED FINITE ELEMENT SIMULATIONS FOR BURGERS'-TYPE EQUATIONS

Süleyman Cengizci^{1,2,*}, Ömür Uğur², Natesan Srinivasan³

¹Computer Programming, Antalya Bilim University ²Institute of Applied Mathematics, Middle East Technical University ³Department of Mathematics, Indian Institute of Technology Guwahati

*Süleyman Cengizci: suleyman.cengizci@antalya.edu.tr

Abstract: In this talk, we are dealing with the numerical solutions to Burgers' type partial differential equations at high Reynolds numbers. The governing equations become more convection-dominated as the Reynolds numbers increase, resulting in spurious oscillations in the solutions obtained by using standard numerical methods. The streamline-upwind/Petrov–Galerkin method is used to stabilize the standard Galerkin finite element formulation to overcome this challenge. Additionally, the stabilized formulation is supplemented with the $YZ\beta$ shock-capturing to achieve better solution profiles around sharp gradients.

Keywords: Burgers' equation; High Reynolds number; Finite elements; SUPG; YZ β shock-capturing