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ABSTRACT

ACOMPUTATIONALAPPROACH FOR PRIORITIZATION OF

PATIENT-SPECIFIC CANCER DRIVERS

A major challenge in cancer genomics is to distinguish the driver mutations that are

causally linked to cancer from passenger mutations that are neutral and do not contribute

to cancer development. The identification of these driver genes could lead to the devel-

opment of therapies. Numerous methods have been proposed for this problem; however,

the majority of these methods provide a single driver gene list for the entire cohort of pa-

tients. On the other hand, mutational profiles of cancer patients show a high degree of

mutational heterogeneity. As such, because the set of driver genes can be distinct for each

patient, a more ideal approach is to identify patient-specific drivers. The results from such

an approach can lead to the development of personalized treatments and therapies.

In this thesis, we develop a computational approach that integrates genomic data, bio-

logical pathways, and protein connectivity information to identify patient-specific cancer

driver genes. We construct a bipartite graph that relates specific mutated genes and vari-

ous outliers for each specific patient. For each patient, we rank the mutated genes based

on a convex combination of two terms. The first term is a weighted scoring of the number

of connections to outlier genes of that patient as well as the outlier genes of other patients.

The second term incorporates the co-occurrences of a mutated gene and an outlier gene

within the same pathway. We compare our method against state-of-the-art patient-specific

cancer gene prioritization methods on patients and cell line data for colon, lung, and head-

neck cancer. We define novel reference gene sets for evaluation of results obtained from

cell line data by utilizing drug sensitivity datasets. Furthermore, we propose and discuss

alternative approaches for evaluating the recovery of known cancer drivers when patient-

specific drivers are provided. Overall, we show that our method can better recover known

and rare cancer genes based on various reference compared to other approaches. Addition-

ally, we demonstrate the importance of pathway coverage in the identification and ranking

of driver genes.

Keywords: Driver Genes Prioritization, Patient-Specific, Protein-Protein Interactions Net-

work, Biological Pathways, Cell Lines, Cancer.
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CHAPTER 1

1. Introduction

1.1. Problem Statement

Cancer is a complex disease caused by somatic mutations that lead to uncontrolled

growth, which can cause abnormal proliferation and tumor development.

A major challenge in cancer biology is to identify the driver mutations that are

causally linked to cancer since most somatic mutations do not lead to cancer. The identi-

fication of these driver genes could lead to the development of therapies. This problem is

called driver mutation (gene) identification.

Several methods have been proposed for this problem; however, the majority of these

methods provide a single driver gene list for a cohort of patients. On the other hand, mu-

tational profiles of cancer patients show a high degree of mutational heterogeneity. Con-

sidering the mutational heterogeneity problem and also in terms of personalized medicine

and therapies, a more ideal approach is to identify patient-specific drivers.

Our proposed method integrates multi-omic datasets to identify patient-specific

drivers and has several contributions in terms of the datasets utilized, the integration with

network and pathway information.

Genes identified by our method will provide insight into cancer initiation mecha-

nisms and will serve as potential new drug targets.
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1.2. Thesis Organization

The thesis is organized as follows. First, in Chapter 2, we review relevant facts about

cancer, types of somatic mutations, and experimental methods for studying it. We also re-

view the state-of-the-art methods for discovering patient-specific cancer driver mutations.

Chapter 3 presents the algorithmic and mathematical background behind our proposed

method. Chapter 4 presents the results of using our model on different data from TCGA

and CCLE, compared to established state-of-the-art methods. Finally, in Chapter 5, we

summarize the thesis.
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CHAPTER 2

2. Background

2.1. Biological Background

2.1.1. Genome Variation

All body cells come from the mitotic cell division of the first fertilized egg.

During the division process, some alterations occur in DNA bases compared to the first

fertilized egg.

There are two types of mutations, somatic and germline [1]. Germline muta-

tions are those carried to the children by the parents, they occur in sperm and egg cells.

These mutations are fairly responsible for the discrepancy of the human population. The

other type of alteration is somatic. These are not passed to the next generations but still

have an effect on the organism on which they occur. Some of these mutations may lead to

cancer.

There are classes of genetic sequence alterations, from a single base in a

genome to entire chromosome arms, Single Nucleotide Variants (SNVs), INDELs (IN-

sertions and DELetions) and Copy Number Variants (CNVs) are part of them. Single

Nucleotide Variations consist of a single nucleotide at an exact location in the genome.

INDELs are the insertions or deletions of genome bases. Copy Number Variations are a
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special type of structural variant (move, copy, or delete entire regions of bases to whole

chromosome arms of DNA). Since a healthy human cell has two copies of each chromo-

some (diploid) its copy number of a region of DNA is two. CNVs occur when a region of

DNA is either amplified or deleted.

For this thesis, we will use the output of the SNV and INDELs mutation call-

ing algorithms as the input data to our methods.

2.1.2. Cancer

Most cancers are mutation-driven. Human cells grow and divide to form new

cells, which are needed. New cells are supposed to take the place of old and damaged

ones. However, cancer occurs when abnormal cells, old or damaged cells survive and

divide indefinitely when they should die.

Tumors are created by these abnormal cells that can divide endlessly, and

disseminate into nearby tissues. Amalignant tumor, can spread to nearby tissues, or even

travel to distant organs in the body, where it forms new tumors far from the original organ,

through the blood or lymph system. It is a complex and heterogeneous disease to which

all body organs can be affected.

2.1.3. Driver and Passenger Mutations in Cancer

Considering the fact that only a subset of somatic mutations leads to cancer,

the question that arises is: Which specific mutation or mutations are implicated in the

contribution of tumor development?

Most somatic mutations within the cancer cell are passenger mutations that

are not directly involved in tumor development [1], [2]. Thus, it is not clear whether a

given mutation in a patient’s tumor is a driver mutation or a passenger.

Driver mutations disturb normal cell control of proliferation, differentiation,

and death. They provide survival and growth advantage, leading to clonal proliferation of

these mutated cancerous cells. However, passenger mutations, which are the majority of

4



the somatic mutations, do not provide any of the perks of the driver mutations.

Cancer genomes can carry up to thousands of mutations that include both

driver mutations and passenger mutations [3]. Two different patients can have completely

different sets of driver mutations, even though they have the same cancer type.

Thus the identification of patient-specific driver genes is difficult due to the

large number of passenger mutations that coexist in the same cancer genome. The identifi-

cation of driver genes is critical for understanding how cancer develops and for developing

personalized therapies.

2.1.4. Protein-protein Interactions

In all biologic processes in a living organism in vivo, we find Protein-Protein

Interaction (PPI).

Protein-protein interactions contribute to cellular functions and biological

processes in all organisms [4]: structural proteins need to interact in order to shape or-

ganelles, molecular machines hold together by protein-protein interactions. Numerous

computational techniques and physiochemical experiments have been employed to de-

tect PPIs. However, these methods are computationally expensive and time-consuming.

Protein-protein interactions are defined as physical contacts that occur in a cell between

proteins. The network consists of multiple nodes (proteins) where edges correspond to

the interactions between these proteins. It is estimated that the current human PPI catalog

cover around 25% of all possible interactions [5].

2.1.5. Biological Pathways

For our body to stay alive and develop, all of its elements from organs to

cells to genes must work in coordination. Cells contain thousands of molecules, mostly

proteins that work together to accomplish missions like responding to the environment

around the body and produce energy. These cells are endlessly receiving chemical cues

from both inside and outside the body, such as infections. Biological pathways send and

receive signals by the cells as a response to these stimuli. To accomplish their assigned
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tasks, the proteins (components of the cells) that make up the biological pathways interact

with each other (protein-protein interaction), as well as with the signals.

A biological pathway is a sequence of interactions between molecules in a

cell. Pathways control the flow of information, energy and biochemical compound in the

cell and the ability of the cell to change its behavior in response to stimuli. It can trigger

the production of a new molecule, like fat and protein, alarm the presence of a hormonal

signal or even motivate a cell to move.

The biological pathways can take actions over short or long distances. Like

the previous example, an infection received after a scratch on an arm, some cells send

signals to nearby cells to attack stranger organisms, and repair the localized damage. Other

cells produce substances that travel through the blood to distant cells, like the epinephrine,

when someone is on a flight, to regulate his/her heart rate and metabolism.

Biological pathways do not always function faultlessly. Most diseases such

as cancer, or diabetes are caused by these faulty pathways, which the body couldn’t cor-

rect. There are various types of biological pathways, the most common are involved in

metabolism, gene expression, gene regulation, and signal transduction.

Metabolic pathways are responsible for the chemical reactions that happen

in the cells to endure life. These reactions help the cells to develop, reproduce, and keep

their structure. As transforming food into energy molecules that keep the living organism

alive and healthy.

Gene-regulation pathways turn genes on and off. It is indispensable because

genes are in charge of protein production, which are the keystone needed to carry out

nearly every task in our bodies. Our body is made up of proteins, helps it to move, and

defend itself against the strange organisms.

2.2. Computational Background

6



Figure 2.1: A representation of a bipartite graph

2.2.1. Bipartite Graph

A bipartite graph is a graph whose vertices can be divided into two disjoint

and independent sets U and V such that every edge connects a vertex in U to one in V.

A bipartite graph is a special case of a k-partite graph with k = 2. Equivalently, a cyclic

graph is bipartite if and only if all its cycles are of even length [6].

The Figure 2.1 shows a bipartite graph, with vertices in each graph colored

based on the disjoint set they belong to.

2.2.2. Cohort Level Methods for Driver Gene Analysis

2.2.2.1. DriverNet

DriverNet [7] is one of the first cohort-level driver gene detection meth-

ods to combine both genomic aberrations and gene expression. DriverNet discovers driver

genes by evaluating their effect on gene expression. This algorithm uses a mutation data

matrix, a gene expression data matrix, and an influence graph.

The binary gene mutation data matrix M contains genes in rows and

patients in columns. And M(i,j) = 1 if gene i is mutated in patient j. The gene expression

7



Figure 2.2: Schematic representation of the DriverNet approach. Green nodes on the left

partition of the bipartite graph correspond to aberrated genes and nodes on the right

represent the outlying expression status for each patient where red indicates outlying

patient-gene events from the gene expression matrix.

data matrix G contains genes in rows and patients in columns like M , and G(i,j) have

the expression value of gene i in patient j. The differentially expressed genes matrix is

derived from G, as a binary matrix G’(i,j), where G’(i,j) = 1, if gene i is over-expressed

or under-expressed in patient j compared to the normal population. The influence graph

is a square adjacency matrix I , where I(i,j) = 1, if i has a direct edge to j in the network.

The influence graph is a mixture of multiple preexisting biological knowledge, including

protein-protein interaction, gene coexpression and others.

The algorithm is formulated in a bigraph where the nodes on the left

represent the genomic aberrationsM (represented in the figure as green nodes) and nodes

on the right (outliers) are multiple sets of differentially expressed genes from G’, where

each set represents a patient(represented as red nodes). Edge is drawn if for each patient

Pk, a gene i in the left partition is mutated in Pk, and is known to have interaction with a

gene j in the right (I(i,j) = 1) that is expressed abnormally in Pk.

DriverNet tries to find mutations in the left part that are highly connected

to the outliers nodes in the right. DriverNet uses a greedy algorithm to solve the optimiza-

tion problem. It chooses the mutation with the highest degree and removes it with the

8



outliers connected to it, and the edges between them, repeatedly. If multiple mutations

have the same highest degree, one is chosen randomly. It stops when there are no muta-

tions or outliers left to cover.

2.2.3. Personalized Methods for Driver Gene Analysis

2.2.3.1. DawnRank

DawnRank [8] considers mutated genes with higher connectivity in

the gene regulatory network as more impactful, using a random walk approach where

Google’s PageRank [9] is applied to the PPI. Using each patient’s gene expression data

but the same gene network for all patients, potential cancer driver genes are ranked based

on their impact on the perturbation of downstream genes in a large directed molecular

interaction network.

DawnRank uses a directed graph represented in a binary adjacency ma-

trix, in addition to a vector which contains the absolute differential expression. The rank

of each gene is related to its in-degree (the incoming edges to the gene), and the damping

factor of the gene 0 ≤ dj ≤ 1, d is a parameter representing the extent to which the rank-

ing depends on the structure of the graph (the higher the di the higher dependency on the

graph). To handle the zero-one gap problem, a dynamic damping factor was used, where

each gene has its own damping factor. The damping factor slowly increases as the number

of incoming edges increases to include more connectivity information into the ranking of

the gene.

At convergence, the algorithm stops when the magnitude of the differ-

ence of the ranks between time t + 1 and the previous time point t falls below a small ε

set to ε = 0.001, or when no solution is present after 100 iterations.

2.2.3.2. SCS
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Single-sample Controller Strategy (SCS) [10] is the first to use network

control theory for personalized driver mutation discovery. It combines mutation data and

expression data into a protein-protein interaction network for each patient, to attain the

driver mutations in a personalized-sample manner. The idea in using network control the-

ory is to detect the correct subset of network nodes (the mutated genes) which control the

transition from the normal state to the disease state, which is presented by the differen-

tial expressed genes, based on individual omics data. Single-sample Controller Strategy

tries to find the minimal set of mutated genes to control the maximal coverage of individ-

ual DEGs in a large directed PPI network. SCS uses binary matrices of SNV and CNV,

mRNAprofiles from paired normal tumor samples, for DEGs analysis, and a PPI network.

SCS applies random Markov sampling on a bipartite graph constructed by control paths

to identify driver genes and the corresponding paths.

SCS first gets the log2 fold-change of gene expression between the

paired samples (tumor and normal). Every gene i for which |log2FC(i)| > 1 is consid-

ered as DEG for each patient, and is assigned +/-1 according to fold change direction.

Using RandomWalker with Restarter algorithm (RWR) to extract the mutation genes and

their interactions from each patient. Which means calculate the probability to reach each

gene from the individual mutations of each sample. The personalized network is then

constructed using the individual mutation genes, alongside with the individual DEGs.

Paths are discovered using a bipartite graph, where there is a set of target

genes (DEGs) connected by directed edges to their inbound neighbors. Abipartite graph is

constructed using the paths obtained previously, containing the set of mutation genes, and

the set of DEGs, edges are made based on the previous paths found. Weights are assigned

to the consensus models according to the frequency of its edges, then genes are ranked

according to their total weights of their consensus models.

2.2.3.3. Prodigy

The latest method that addressed the problem, PRODIGY (Personalized

Ranking Of DrIver Genes [11], is a method that quantifies the impact of each mutated

gene on every deregulated pathway using the prize collecting Steiner tree model (PCST).
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Drivers are ranked by their aggregated impact on all deregulated pathways.

Prodigy evaluates the expression and mutation profiles of the patient

along with data on known pathways and global PPI network. The algorithm assumes

that driver mutations influence the deregulation of other genes in affected pathways. Ex-

ceptionally the drivers will have a connectedness to these pathways, and the method is

designed to score these connections using a variation of the prize collecting Steiner tree

problem.

Prodigy uses a binary matrix of SNVs/INDELs and mRNA expression

profiles from healthy and tumor tissue samples. Alongside with two types of undirected

interaction network, a global PPI network STRING (only highly reliable interactions were

selected, those having a confidence score > 0.7), and a collection of pathways (Reactome,

KEGG, NCI PID).

Prodigy first computes the differential expression genes (DEGs), genes

with log2 FC(g) > 2. Prodigy uses PCST to score the influence of a mutation on a dereg-

ulated pathway, so the goal is to find the subtree that maximizes the sum of the weights

of the nodes minus the edges cost. Prodigy uses pathways assuming that the influence of

driver genes is disseminated along pathways and is manifested by DEGs. Every DEGs

that belongs to the pathway has a positive score (prize) depending on its log2 fold change

value and every other node serving as intermediate nodes in the Steiner tree has a nega-

tive score (penalty) depending on its degree. In addition, edge weights are considered as

penalties reflecting the PPI interaction reliability.
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CHAPTER 3

3. Materials and Methods

Given the mutation data and gene expression profile from a cancer cohort, we aim to

discover and rank the responsible driver genes in each individual. Our proposed method

relies on a bipartite graph using multi-omic datasets, and multiple pathways, assuming

that driver genes are disseminated along pathways.

3.1. Input Data

We perform evaluations on three cancer types: COAD, LUAD, and HNSC. Our eval-

uations utilize both patient data from The Cancer GenomeAtlas (TCGA) project [12] and

cell line data from Cancer Cell Line Encyclopedia (CCLE) [13]. We focus on these three

cancer types in particular as they have the maximum number of cell lines in the CCLE

project. The datasets we compile include 279 patients and 46 cell lines for COAD; 505

patients and 35 cell lines for LUAD; and 498 patients and 60 cell lines for HNSC. Datasets

for TCGA patients are downloaded from TCGAbiolinks [14] and datasets for cell lines

are downloaded from depmap.org [15]. The collection of pathways is retrieved from

Prodigy’s supplementary data, which contains 285 pathways from KEGG database [16].

For PPI, two networks are used : (i) a global PPI network taken from STRING [17]

where only experimentally validated physical interactions with confidence score > 0.7 are

included, that consists of 11,302 nodes, and 273,210 edges (ii) and a second PPI network

constructed by SCS, which consists of 11,648 genes and 211,794 edges.
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3.2. Data Preparation

We assume that the expression of a gene across the patients is distributed as a normal

distribution. We deem the gene of interest to be an outlier gene for those patients where

the expression value of the gene is outside 2 stds from the mean.

Among the evaluated methods, only SCS requires expression data from paired nor-

mal and tumor patients. To evaluate all the employed methods on a larger dataset, we

calculate differentially expressed genes for SCS from unpaired gene expression data us-

ing Prodigy’s method of identifying differentially expressed genes.

3.3. The Algorithm

Our model extends DriverNet’s bipartite graph construction such that a personalized

bipartite graph is created for each patient.

Let P = {P1, P2, . . . , Pr} denote the set of functional pathways. Let G = (V,E)

denote the PPI network, where V denotes the set of nodes corresponding to the proteins,

and E denotes the set of edges corresponding to pairwise protein interactions. Let S =

{S1, . . . Sn} denote the set of patients (patients). If a gene u is mutated in sample Si, we

create an instance of u denoted with ui
m and denote the set of all such instances withM i.

Similarly if a gene v is an outlier for sample Si, we create an instance of v denoted with

vio and denote the set of all such instances with O
i.

3.3.1. Graph Construction

We construct a bipartite graphBi with the edge setEi, for each sample Si. Bi

has two node partitions, the first of which isM i. The second partition isO1∪O2∪. . .∪On.

Note that a gene may appear multiple times in the second partition as instances of different

outlier sets. For ui
m ∈M i, vjo ∈ Oj , there exists an edge (ui

m, v
j
o) ∈ Ei, if (u, v) ∈ E and

uj
m ∈ M j . In other words, an instance of a gene u mutated in sample Si has a bipartite

edge with an instance of a gene v determined to be an outlier in some sample Sj , if they

interact in the PPI network and u is a mutated gene in Sj also.

A schematic view of the graphs is given in the Figure 3.1
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Figure 3.1: Patient-specific graphs

For each gene umutated in Si, we define a weightwi(u) based on the bipartite

graph Bi and the set of pathways P . It is a convex combination of the personalized score

(ps) of u, denoted with psi(u) and the pathway coverage score (pcs) of u, denoted with

pcs(u). Thus wi(u) = α1 × psi(u) + (1 − α1) × pcs(u). The pathway coverage score

pcs(u) is simply the number of pathways Pk ∈ P where u ∈ Pk.

The personalized score psi(u) on the other hand, makes use of the person-

alized information of Si itself, as well as the personalized information available from all

other patients. The contribution of the former is denoted with psiown(u) and that of the

latter with psiother(u). The personalized score then is a convex combination of these two

scores, that is

α2 × psiown(u) + (1− α2)× psiother(u).

To define both terms we use a combination of the relevant degrees in the

bipartite graph Bi and the number of pathways common to a relevant pair of genes. Let

degown(u
i
m) be the number of edges (u

i
m, v

i
o) ∈ Ei. For a pair of nodes u, v, let cp(u, v) de-

note the number of pathways Pk ∈ P that includes both u and v. We define cpcsown(u
i
m),
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the common pathway coverage score (cpcs) of ui
m with respect to its own set of outliers

Oi, as ∑
∀v|(ui

m,vio)∈Ei

cp(u, v).

The score psiown(u) is then defined as degown(u
i
m)+cpcsown(u

i
m) normalized

with maxown, which is the maximum value of degown(x
i
m) + cpcsown(x

i
m) obtained by

any xi
m ∈ M i. Analogously, for the contribution of the information gathered from other

patients in the cohort, let avgdegother(u
i
m) be the number of edges (u

i
m, v

j
o) ∈ Ei for i 6= j,

averaged over nother which denotes the number of other outlier sets inducing at least one

edge with ui
m in Bi, that is |{Oj|i 6= j ∧ ∃vjo((ui

m, v
j
o) ∈ Ei)}|. Let avgcpcsother(ui

m), the

common pathway coverage score of ui
m with respect to the other sets of outliers Oj for

i 6= j be defined as, ∑
∀v|(ui

m,vjo)∈Ei∧i 6=j

cp(u, v)

nother

.

The score psiother(u) is then defined as avgdegother(u
i
m) + avgcpcsother(u

i
m)

normalized with maxother, which is the maximum value of avgdegother(x
i
m) +

avgcpcsother(x
i
m) obtained by any x

i
m ∈M i.

A schematic view of the algorithm is given in Figure 3.2.

3.3.2. Prioritization of Drivers

Employing the weight assignments of the previous subsection we rank the

genes inM i in an adaptive manner. Gene u with the largest weight wi(u) is assigned the

next available rank. Node ui
m and all its nodes incident to it in Bi are removed from Bi

and the weight assignment step is repeated with the new bipartite graph. This process of

selecting the largest weight node followed by necessary node removals and reassignment

of node weights is repeated untilM i becomes empty.
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Figure 3.2: Patient-specific method Approach.

Algorithm 1 ps(u) Calculations

1: for ui
m ∈M i do

2: psiown(u
i
m)← degown(u

i
m) + cpcsown(u

i
m)

3: psiother(u
i
m)← avgdegother(u

i
m) + avgcpcsother(u

i
m)

return psiown(u
i
m), ps

i
other(u

i
m)

Algorithm 2 Prioritize drivers

Require: graph G, Degs and PPCs

calculate ps
2: for ui

m ∈M i do

maxown ←Max(psiown(u
i
m))

4: maxother ←Max(psiother(u
i
m))

calculate pcs(ui
m)

6: while ∃ui
m ∈M i do

for ui
m ∈M i do

8: psi(ui
m) = α2 × psiown(u

i
m) + (1− α2)× psiother(u

i
m).

wi(ui
m) = α1 × psi(ui

m) + (1− α1)× pcs(ui
m)

10: selected_driver ← wi(ui
m))

delete neighbors(selected_drive)
12: delete selected_drive

calculate ps
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CHAPTER 4

4. Results and Discussion

We implemented the algorithm in Python, using the NetworkX library to create the bipar-

tite graphs. The source code and the input data are available on Github.

4.1. Comparison to other methods

We compare our Models to Prodigy [11], and SCS [10] using the same input (COAD,

LUAD, HNSC from TCGA and cell lines from CCLE) data and network. These methods

were chosen since there aren’t many methods that study specific-sample cancer prioriti-

zation of driver genes, and due to its data input similarity.

4.2. Validation

In order to evaluate the performance of ourmethod, we use awell-studied cancer gene

database, consisting of 723 genes, from the COSMIC Cancer Gene Census (CGC) [18].

CGC is a part of COSMIC, the catalog of somatic mutations in cancer datasets. CGC is

used for the evaluation of methods that are run on both TCGA data and CCLE datasets.

CGC contains cancer-associated genes that have different types of mutations: SNVs,

translocations, amplifications. Since we only use SNVs and INDELs as input, we define

the reference gene set of a patient as the set of genes that are mutated in that patient.

Apart from CGC, other reference lists are used for evaluating the results obtained

from CCLE. We use the Genomics of Drug Sensitivity in Cancer (GDSC, [19]) database

to retrieve the list of drugs to which the corresponding cell line shows strong sensitivity.
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Namely, for each cell line we identify the drugs with z-scores < 0 where the z-score is

provided by GDSC. It assesses whether a cell line is significantly sensitive or resistant to

a drug by comparing the drug response curves of the drug of interest for all the cell lines.

Once we identify the drugs, we also retrieve their target genes from the same database.

We intersectthese target genes with CGC and with the set of mutated genes in the corre-

sponding cell line to get the final reference list. We also compile a related reference list

where we also include the neighbors of the target genes based on the PPI.

CGC reference list

reference = CGC ∩ SNV s (4.1)

Drug Target reference list:

reference = DrugTargets ∩ CGC (4.2)

Drug Targets and neighbor reference list:

reference = (DrugTargets+ neighbors) ∩ CGC (4.3)

The performance of each method is measured by means of Precision, Recall and F1

score, that are computed with respect to reference gene sets.

Let Driversi[k] be the set of top k genes for the patient i, then

Precisioni[k] =
Driversi[k] ∩ referencei

k
(4.4)

Recalli[k] =
Driversi[k] ∩ referencei

referencei
(4.5)

F1i[k] = 2 ∗ Precisioni[k] ∗Recalli[k]

Precisioni[k] +Recalli[k]
(4.6)
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We use two different evaluation methods. The Repetitive used by Prodigy if an

individual has less than N ranked genes, the last value for this patient would be duplicated

so that all quality measure vectors for all patients are of length N. Together with Common

methods, where every patient would have the same number of driver genes across all

methods, in other words for each patient we take the minimum number of drivers across

all the methods.

4.3. Results

Using three cohorts of cancer patients from TCGA: COAD, LUAD and HNSC (279,

505, and 498 patients, respectively), and Cell Lines (colon, lung, 45, and 33 patients re-

spectively), we perform a comparison with two other methods, Prodigy [11], and SCS [10]

along with our method using various values for our alpha parameters. We also include a

simpler version of our model called the the Pathway Coverage Score Only (PCS) model,

where we don’t include the first part of the weight wi(u) formula, the personalized score

of u (psi(u)) is not included in the calculations. We just take into consideration the the

pathway coverage score of u (pcsi(u)) (wi(u) = pcs(u)).

4.3.1. Ranking of Driver Genes

4.3.1.1. Evaluations with respect to CGC reference list

We first compare the models based on their potential to recover the CGC

genes. We compute the precision, recall, and F1 score for each patient and then compute

the average value across the patients for each gene in the top 20. We then calculate the

area under the curve (AUC) as the value over all the patients. Figure 4.1 shows the results

obtained from all four models using the COAD cancer data.

We compare the driver genes obtained from each method to the CGC

list, using Repetitive evaluation (Figure 4.1 ), and the Common evaluation (Figure 4.2 ).

For each gene in the top k, the number of patients covered is represented in the figures.
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Giving a higher weight to the pathway coverage score (pcsi(u)) (a small

α1), and the specific patient’s personalized score (ps
i
own(u)) (a large α2), results in higher

performance for our model, as shown in the following figures, the model with α1 as 0.1

(Pathway Coverage Score as 0.9), and α2 as 0.9, outputs the best ranking over all the

methods for both evaluations Repetitive and Common.

The PCS Only model achieves a higher AUC value than the alternative

methods, although it does not use any other data related to the patient rather than the

mutation genes set and pathways. The second ranked method is our model, due to the

integration of the PCS data to the equation, which gives it higher performance. Finally,

Prodigy and SCS rank third and fourth respectively in both evaluation types.

In the Repetitive evaluation, our models’ performance gets worse in pre-

cision after the top 9 genes, and this is due to the fact that our models output a larger set of

driver genes for each patient than the alternative methods. For Prodigy and SCS, which

usually output a small set of drivers, the precision value at the last output gene is repeated

till 20 for most of the patients. As shown in Figure 4.1 after the 9th ranking gene the

curves start getting an almost straight line to the end of the curve. This is more clear in

the recall and F1 score evaluation curves.

While in theCommon evaluation our models’performance is kept higher

along with all the top k genes since the number of drivers is the same for every patient

overall models where the evaluation is fair.

These results show that our method can find driver genes for every pa-

tient separately, and accurately in colon cancer.

Figures 4.3 and 4.4 shows corresponding results for the lung cancer

data. We use the same parameters for LUAD as in COAD in our method, giving a higher

weight to the PCS and the patient’s degree in the Alpha Score formula. As in the previous

evaluation, our model reaches the best performance with CGC reference sets compared

to the alternative methods Prodigy and SCS, but the PCS Only model still has a better

performance.
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Figure 4.1: CGC Repetitive with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data

Figure 4.2: CGC Common with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data

These results show that our method can find driver genes for every pa-

tient separately, and accurately in lung cancer.

Figures 4.5 and 4.6 present the corresponding results for the HNSC

data. As in the previous cancer data, we use the same parameters in our method. Unlike

the previous evaluation’s results, Prodigy ranks first as perRepetitive precisionAUCvalue,

the PCS Only, and our model comes after respectively. Finally, SCS is the worst ranking

method. However in the rest of the evaluations, the ranking is similar to the previous

cancer data ranks, the PCS Only model has a higher performance, then our model comes

next very close to the PCS model. Prodigy comes next, far from our model. Finally, SCS

scores the worst between all the alternative models.
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Figure 4.3: CGC Repetitive with respect to precision, recall and F1 scores calculated as

an average across the cohort for LUAD

Figure 4.4: CGC Common with respect to precision, recall and F1 scores calculated as

an average across the cohort for LUAD

Figure 4.5: CGC Repetitive with respect to precision, recall and F1 scores calculated as

an average across the cohort for HNSC
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Figure 4.6: CGC Common with respect to precision, recall and F1 scores calculated as

an average across the cohort for HNSC

4.3.1.2. Recovering Rare Driver Genes

In this evaluation, we identify the rare drivers, the mutated genes that

have a mutation frequency of <2% in the cohort, and ranked in the top 20 driver lists of

the patient. The reference list of the rare drivers differs from cancer to another, it’s the

intersection of CGC genes with the total rare genes of the cancer cohort, (COAD, LUAD,

and HNSC have 258, 384, and 424 reference genes respectively).

reference = GGC ∩Rare_SNV s (4.7)

As in CGC evaluation, using the same model, giving a higher weight to

the Pathway Coverage Score will result in a better performance for our model. The model

with 0.1 as α1 and 0.9 as α2 (Pathway Coverage Score as 0.9), outputs the best driver

ranks overall cancer types compared to the other possible parameters combinations.

Figures 4.7 and 4.8 shows analogous results for the colon cancer data.

SCS ranks first in Repetitive precision and F1 Score, which is followed by Prodigy, our

model, and PCS Only. Whereas in the Repetitive recall, Prodigy gets the best performance

followed by our model and PCS Only respectively, and finally SCS ranks last.

In the Common evaluation, the ranks are different from the previous

evaluations. Our model ranks the second best after PCS Only, by a small difference as per
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AUC value, in the precision and F1 score evaluations followed by SCS and then Prodigy.

On the other hand, SCS performs best in the recall evaluation, succeeded by Prodigy, our

model and then PCS Only last.

Figure 4.7: Rare drivers Repetitive evaluation with respect to precision, recall and F1

scores calculated as an average across the cohort for COAD

Figure 4.8: Rare drivers Common with respect to precision, recall and F1 scores

calculated as an average across the cohort for COAD

The figures 4.9 and 4.10 shows the corresponding results of the lung

cancer data. Contrary to the previous cancer type results, the ranking of the methods are

similar for Repetitive and Common evaluation schemes. Our model ranks as expected

second after PCS Only, accompanied by Prodigy and then SCS at last in all ranking eval-

uations.

The results show that our model can identify rare driver genes in LUAD

cancer effectively, and accurately.
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Figure 4.9: Rare drivers Repetitive evaluation with respect to precision, recall and F1

scores calculated as an average across the cohort for LUAD

Figure 4.10: Rare drivers Common with respect to precision, recall and F1 scores

calculated as an average across the cohort for LUAD
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Lastly, the figures 4.11 and 4.12 shows the results on HNSC data. Start-

ing with the Repetitive precision evaluation, Prodigy ranks first followed up by SCS ac-

companied closely by PCS Only then our model at last. Dissimilarly PCS Only model

ranks the drivers best in all other evaluation types, followed by our model, succeeded by

Prodigy and SCS respectively at last position.

These figures demonstrate that our model can distinguish rare driver

genes more accurately than other methods generally.

Figure 4.11: Rare drivers Repetitive evaluation with respect to precision, recall and F1

scores calculated as an average across the cohort for HNSC

Figure 4.12: Rare drivers Common with respect to precision, recall and F1 scores

calculated as an average across the cohort for HNSC

4.3.2. Evaluations on CCLE data

Cell lines are usually originated from a single Common ancestor cell. Human

26



cancer cell lines have been one of the pillars for cancer studies. The advantages that make

cell lines useful as in vitro models are that they provide a homogenous population of cells.

And they are relatively easy to grow in a short period. They are employed to study the

biology of cancer and to test hypotheses to improve the efficacy of cancer treatment [20].

The CCLE project is a collaboration between the Broad Institute and the No-

vartis Institutes for Biomedical Research. Its goal is to conduct a detailed genetic and

pharmacologic characterization of a large panel of human cancer models.

4.3.2.1. Drug Targets Reference List

In this evaluation, we define the reference list by intersecting the CGC

genes with the Drug Targets genes.

Figures 4.13 and 4.14 show the results obtained from colon cancer cell

lines. Our model has the highest AUC, followed by the PCS Only model, Prodigy, and

SCS.

Figure 4.13: Drug Targets Repetitive average precision, recall, F1 across all cell lines for

COAD

The figures 4.15 and 4.16 illustrate the results on the lung cancer cell

lines. Our model has the highest AUC, ranking first followed by the PCS Only model,

Prodigy respectively then SCS has the worst results in Repetitive precision and F1 score

evaluations. On the other hand, SCS has a betterAUC then Prodigy in the Repetitive recall

coming after our model and PCS Only respectively.
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Figure 4.14: Drug Targets Common average precision, recall, F1 across all cell lines for

COAD

On the other hand in theCommon evaluations, ourmodel achieves higher

results per AUC value, followed by PCS Only. Prodigy scores a higher AUC in the preci-

sion evaluation then SCS, while in recall and F1 score SCS performs better.

Figure 4.15: Drug Targets Repetitive average precision, recall, F1 across all cell lines for

LUAD

4.3.2.2. Drug Targets and Neighbors Reference List

In this evaluation, we take as a reference list the intersection of the CGC

genes with the Drug Targets genes in addition to their first mutated neighbors.

Using the same model against the other methods, we got the following

results shown in Figures 4.17 and 4.18 evaluating the colon cell lines. Our model has

the best performance in all evaluations followed by the PCS Only model. Prodigy comes
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Figure 4.16: Drug Targets Common average precision, recall, F1 across all cell lines for

LUAD

third before SCS in precision evaluation in both Repetitive and Common. However, SCS

performs better than Prodigy in recall and F1 score in both Repetitive and Common.

Figure 4.17: Drug Targets and Neighbors Repetitive average precision, recall, F1 across

all cell lines for COAD

The Figures 4.19 and 4.20 illustrates the evaluation of the lung cancer

cell lines data. Our model has the best performance in all evaluations followed by the

PCS Only model. Prodigy and SCS rank third and fourth, respectively in terms of recall

defined based on Repetitive evaluation scheme. SCS performs better than Prodigy in the

rest of both Repetitive and Common evaluations.

Overall, our model outperforms PCS Only, Prodigy, and SCS in terms

of Precision, Recall, and F1 for both Repetitive and Common evaluations, using various

reference lists in CCLE data.
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Figure 4.18: Drug Targets and Neighbors Common average precision, recall, F1 across

all cell lines for COAD

Figure 4.19: Drug Targets and Neighbors Repetitive average precision, recall, F1 across

all cell lines for LUAD

Figure 4.20: Drug Targets and Neighbors Common average precision, recall, F1 across

all cell lines for LUAD
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CHAPTER 5

5. Conclusion

5.1. Conclusion

In this thesis, we propose a novel approach to identify patient-specific driver genes.

An important contribution of our method is the discovery of the effectiveness of pathway

coverage on the identification of patient-specific driver genes identification. Our method

ranks mutated genes by their occurrence in the pathways collection, and their effect on

dysregulated genes. Bipartite graphs are created to represent the relations between the

mutated genes (drivers) and dysregulated genes (outliers), as well as the common path-

way coverage in each patient. Using various datasets and evaluations, we show that the

use of pathway coverage score and common pathway coverage improve the identification

of patient-specific cancer drivers. Furthermore, our model outperforms the alternative

methods in most evaluations in recovering known cancer reference genes. Another con-

tribution of our model is the use of cell lines data from CCLE. To evaluate results obtained

on cell lines, we introduce a novel reference list based on drug sensitivity data fromGDSC.

In conclusion, we propose a model that effectively combines genomic data with pathway

and connectivity information and show its superiority in identifying patient-specific driver

genes.

5.2. Future Work

Onemain direction is to improve the personalized score formula such that ourmethod
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performs better than PCS only model in a larger number of evaluations. Another direc-

tion is to utilize more recent and accurate input data. Within this context, we can use

tissue-specific PPI and pathways depending on the cancer type. Currently, we use “bulk”

mutation and gene expression data. Bulk approaches measure properties of tumor sam-

ples which are mixtures of multiple cell populations such as immune, stroma, and normal

cells [21] [22]. As such, bulk measurements ignore the intra-tumor heterogeneity present

in tumor samples. One strategy is to use the recently proposed deconvolution algorithms

[23] to infer gene expression and mutation profiles specific to tumor cells to get rid of the

effect of other accompanying non-tumor cells. A further future direction is to add another

layer for evaluation of results obtained from TCGA data where patients are mapped to

cell lines. We can use one of the recently developed approaches to construct this mapping

[24] [25] [26] [27] [28]. Then, each patient can have its own reference gene set which

is defined based on the drug targets approach that we use for cell lines. This would lead

to a more accurate definition of patient-specific reference gene sets for evaluating patient-

specific driver ranking methods. Lastly, one straightforward future step is to extend the

evaluation to other cancer types in TCGA data.
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Appendix A

Different Alpha values comparison on

TCGA data

Figure A.1: CGC Repetitive with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data different alpha values
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Figure A.2: CGC Common with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data different alpha values

Figure A.3: CGC Repetitive with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data different alpha values

Figure A.4: CGC Common with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data different alpha values

34



Figure A.5: CGC Repetitive with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data different alpha values

Figure A.6: CGC Common with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data different alpha values

Figure A.7: CGC Repetitive with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data different alpha values
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Figure A.8: CGC Common with respect to precision, recall and F1 scores calculated as

an average across the cohort for COAD data different alpha values

36



Appendix B

Different Alpha values comparison on

CCLE data

Figure B.1: Drug Targets Repetitive average precision, recall, F1 across all cell lines for

COAD with different alpha values
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Figure B.2: Drug Targets Common average precision, recall, F1 across all cell lines for

COAD with different alpha values

Figure B.3: Drug Targets and Neighbors Repetitive average precision, recall, F1 across

all cell lines for COAD with different alpha values

Figure B.4: Drug Targets and Neighbors Common average precision, recall, F1 across all

cell lines for COAD with different alpha values
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Figure B.5: Drug Targets Repetitive average precision, recall, F1 across all cell lines for

COAD with different alpha values

Figure B.6: Drug Targets Common average precision, recall, F1 across all cell lines for

COAD with different alpha values

Figure B.7: Drug Targets and Neighbors Repetitive average precision, recall, F1 across

all cell lines for COAD with different alpha values
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Figure B.8: Drug Targets and Neighbors Common average precision, recall, F1 across all

cell lines for COAD with different alpha values

Figure B.9: Drug Targets Repetitive average precision, recall, F1 across all cell lines for

LUAD with different alpha values

Figure B.10: Drug Targets Common average precision, recall, F1 across all cell lines for

LUAD with different alpha values
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Figure B.11: Drug Targets and Neighbors Repetitive average precision, recall, F1 across

all cell lines for LUAD with different alpha values

Figure B.12: Drug Targets and Neighbors Common average precision, recall, F1 across

all cell lines for LUAD with different alpha values

Figure B.13: Drug Targets Repetitive average precision, recall, F1 across all cell lines

for LUAD with different alpha values
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Figure B.14: Drug Targets Common average precision, recall, F1 across all cell lines for

LUAD with different alpha values

Figure B.15: Drug Targets and Neighbors Repetitive average precision, recall, F1 across

all cell lines for LUAD with different alpha values

Figure B.16: Drug Targets and Neighbors Common average precision, recall, F1 across

all cell lines for LUAD with different alpha values
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