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Chapter 1

UAVs in Intelligent 
IoT-Cloud Spaces

Fadi Al-Turjman
Antalya Bilim University

Enver Ever and Murat Fahrioglu
Middle East Technical University

The wireless cellular communications infrastructure mainly depends on base 
station systems (BSS) that are responsible for ensuring communications of 
associated nodes and user equipment (UE). Under normal circumstances, the 
cellular and  infrastructure-based systems work effectively. However, in events of 
unexpected conditions and natural disasters, such systems are relatively fragile and 
can easily be disrupted. During a natural calamity, the wireless communications 
infrastructure can be severely affected, where one or more BSS can stop work-
ing. The disruption in the operation of BSS affects the communications of inter-
connected devices. In such circumstances, flying ad hoc networks can assist as a 
substitute to provide structureless communications framework for communicating 
emergency and safety information using unmanned aerial vehicles (UAVs).

Recent developments in microelectromechanical systems (MEMS) technology 
and very large-scale integration have been influential in transforming large BSS 
to minute structures, which enables the adaptation of small-sized drones (or 
UAVs). UAVs are capable of the replicating technology features of BSS and can 
be used to form a small coverage area. UAVs, with the ability to move autono-
mously and to hover over the affected area, can function as a small cell to establish 
communications with the active UE in the designated emergency coverage area. 
Hypothetically, with the presence of sufficient UAVs, the communications outage 
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area in vulnerable regions can be fully covered. The restoration of a communica-
tion network in such areas using UAVs provides a rapid and reliable alternative to 
reconfigure and replicate necessary functionalities of the affected BSS. These drone 
small cells (DSCs) can also be used to enhance and extend communication cover-
age in disaster areas where on-ground repairs are not feasible. The ability of DSCs 
to reposition itself and respond to the UE by reducing distance extends coverage, 
decreases outage probability of the UE in coverage zones, improves bandwidth 
efficiency, and optimizes system throughput.

However, due to the nature of sensitivity of such situations, additional 
constraints such as delay and reliability are required, which are very challenging. 
Moreover, the incorporation of appropriate information-based urgency index in ad 
hoc networks is also very important. In fact, communications in emergency net-
works can be classified into a number of precedence levels, where alerting messages, 
well-being messages, control messages, distress calls, and data collection schedules 
can be characterized separately to optimize the ongoing communications between 
UAVs. Therefore, a suitable intelligent mechanism is needed to associate priority 
levels with these calls, messages, and schedules. Providing multihop collaboration 
among UAVs in an attempt to reach possible urgent services that can be provided by 
the cloud facilities, where machine learning (ML)-based approach is employed for 
the adaptation of existing configuration can significantly improve the services that 
DSCs can provide. Automating the collection and analysis of data has the potential 
to lead to more robust and intelligent systems that can save lives and time for the 
emergency and rescue teams involved.

1.1 � Intelligence in UAVs
Recently, artificial intelligence, specifically ML, showed an outstanding 
performance in complicated tasks that require human-like intelligence and intu-
ition to perform. ML is suited for the situations where there are no defined rules for 
performing a task, and instead, the rules are learned from real data. ML is capable 
of detecting hidden structures in the data to make smart decisions. ML techniques 
can be classified in general into three main categories. This classification is mainly 
based on the kind of data and the objective of the task. The three categories are as 
follows.

	 1.	Supervised learning: This is the well-established and most used technique. 
Supervised learning techniques use data to make accurate predictions and 
learn the mapping between the input and its corresponding output while 
receiving a feedback during the learning process to identify things based on 
similar features. Approaches in this category are used to predict an outcome 
or the future or to classify the input to a set of desired classes. Most com-
mon approaches in this category can be regression algorithms, support vector 
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machine, and neural network approaches. In order to introduce the training 
employed in these techniques, usually a function (linear, nonlinear, polyno-
mial, fully connected neural network, etc.) that can best approximate the 
relation between the input and output data is defined. Then, a cost function 
is set to tell the learner how much it is far from the best answer, so it acts as 
a feedback signal. In turn, this signal is used to update the parameters of 
the function at each iteration. At the end, this function is used to make the 
prediction of future input or classify unseen data.

	 2.	Unsupervised learning: Unlike supervised learning that uses labeled data, 
unsupervised learning has no labels and no feedback signal. This technique is 
mostly used to find the hidden structure of the data and move it into similar 
groups. So, they are mainly used for pattern detection and descriptive mod-
eling. These types of algorithms are promising to achieve general artificial 
intelligence, but they usually lack behind supervised learning in terms of 
accuracy and computation time. K-means and autoencoder are the most 
known unsupervised algorithms.

	 3.	Reinforcement learning (semisupervised): This technique resembles to highly 
extend the way humans learn and navigate through their daily life tasks. 
Reinforcement learning is neither fully supervised nor unsupervised, but it’s 
a kind of hybrid approach.

Appling any of these ML techniques in a DSC-based coverage network can restore 
the necessary links in the communications outage area while ensuring minimal 
delay for emergency communications and maximum network throughput for 
better bandwidth/resource utilization. Further improvements in ML techniques 
design for infrastructureless UAV-based communications in emergency personal 
sensor networks (PSNs) can also support in disaster communications, using 
new technologies such as device-to-device (D2D), machine-to-machine, internet 
of things (IoT) communications. For example, authors in Refs. [1,2] examined 
how the in-coverage UE deliver the elementary network services to out-of-coverage 
UE by relaying their data to eNB (evolved NodeB) as base station. The study inves-
tigated the selection of an in-coverage UE in PSN. The findings suggested that 
there is no centralized entity in PSN to assist the discovery and synchronization 
of UE and should separately be addressed, which results in high energy consump-
tion and delay. In addition, authors in Ref. [3] outlined that UE selection process 
was also highly critical because both in- and out-of-coverage UE have very limited 
energy and processing capability. There was limited reliability in terms of availabil-
ity, throughput, and traffic handling capabilities of UE and cannot concurrently 
handle PSN demands. Therefore, the use of DSCs is well suited for PSNs. The suit-
ability of DSCs in PSNs is primarily attributed to self-organization, mobility, and 
delay minimization abilities of DSCs.

In Refs. [4,5], UAVs are proposed as a part of a system targeting postdisas-
ter scenarios. The subsystems running on each UAV are explained and evaluated 
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using a prototype helicopter to prove the efficiency of the navigation subsystem. 
The long-term evolution-unlicensed (LTE-U) technology is proposed in Ref. [6] 
for DSCs to enhance the achievable broadband throughput for postdisaster assis-
tance. An ON/OFF game-based mechanism is employed for effective use of LTE-
U, and to reach a correlated equilibrium. Numerical simulations are employed in 
Ref. [7] to study the coverage that can be provided by UAV-based base stations. 
The study attempts to minimize the number of stops and amount of delays for a 
single UAV that needs to visit various positions to completely cover the poten-
tial disaster area. This study is further extended in Ref. [8] for multiple UAVs. 
A framework is proposed for optimizing the 3D placement and the mobility of 
UAVs. Simulations performed using MATLAB® provide results that show sig-
nificant enhancements using the proposed approach, especially in terms of reduc-
tions in transmission power of IoT devices and system reliability. Through these 
results, the significance of intelligent decisions in terms of UAV deployment and 
repositioning has been emphasized.

1.2 � Collaborative UAVs in Cloud
The decision-making and evaluation processes of cloud-based studies in this 
area are mainly dependent on high-level analytical abstractions of scenarios 
considered. We believe that there are factors above the physical and data link 
layers that can affect the optimization of heterogeneous infrastructures that can 
involve conventional base stations, D2D communications of UEs, and DSCs. For 
incorporating the potential complexities of more realistic scenarios, it is possible to 
provide communication between UAVs and the existing cloud facilities to use more 
sophisticated approaches such as ML for the analysis [9].

In Ref. [10], the authors propose a framework to use UAV support for wire-
less powered communication (WPC) techniques that mainly focus on providing 
energy to the UEs of potential victims in disaster areas. The mobility features of 
UAVs are employed to improve the conventional WPC techniques that are mainly 
dependent on a static access point responsible for charging a set of wireless nodes 
in the downlink. A distributed resource management mechanism is proposed in 
this study to optimize the public safety IoT (PS-IoT) devices’ uplink transmis-
sion powers and UAV positioning. However, considering allocation of uplink and 
downlink resources and optimization using various methods based on game the-
ory may not be sufficient, since higher level of simulations where traffic conditions, 
mobility-related issues, and availability of other facilities should also be considered 
together with facilities provided by UAVs. Furthermore, considering the limited 
flying time mainly due to the limited energy resources of UAVs, the optimum con-
figuration for the transmission of safety critical information becomes even more 
critical.
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A drone cooperation scenario is considered in Ref. [11]. The UAV-based base 
stations are employed together with conventional base stations in an attempt to aid 
the disaster-struck regions where terrestrial infrastructure is damaged. The main 
focus of this study is efficient power allocation strategies for the microwave base 
station as well as smaller UAV-based base stations. The power control strategy pre-
sented is self-adaptive depending on the interference threshold employed as well as 
data rate requirements. Factors such as UAV altitude and number of ground users 
are considered with an analytical abstraction for simulations. The importance of 
incorporation of UAVs in the multitier heterogeneous networks for better network 
coverage and capacity is emphasized in this study as well [12].

1.3 � Conclusion
Research in DSC is still in its infancy, and many practitioners and academics are 
keen to pursue their research in this scholarly area. The use of DSC-based solutions, 
where an infrastructure can be made available very rapidly, particularly, for emer-
gency communications in disaster-affected areas, is a very promising solution.

The research work on this topic mainly advocates the following reasons 
for the employment of DSC-based solutions in PSNs: (1) UAVs are able to 
hover at higher altitude to provide a suitable height gain; (2) through energy 
sustainability, UAVs can be made suitable for PSNs, since the main aim is to 
exchange emergency-related information for short durations; (3) while hovering, 
UAVs improve connection reliability and offer better connectivity and efficiency 
for UE; (4) the usage of DSCs can allow efficient use of bandwidth and improve 
frequency reusability; and (5) the use of DSCs will result in rapid deployment 
of communication network in disaster-affected areas where early involvement is 
essential. The utilization of DSCs in critical scenarios has the potential of intro-
ducing significant advantages, since due to their mobility, flexibility, and adapt-
ability, the DSCs are able to provide coverage and capacity exactly where and 
when it is needed even under such circumstances that other means of communi-
cation services are not available.

The main areas of interest that requires improvements for development of 
DSCs are as follows: (1) optimized on-demand communications should come with 
enhanced throughput to support highly resilient networks within critical and emer-
gency scenarios; (2) ad hoc on-demand formation of small cells should support 
enhancement of the number of users to be served by and at the same time prioritize 
the communications of rescue workers and first responders, reporting from the 
disaster-affected areas; (3) A priority-wise channel access establishment should also 
be provided for emergency-related communications, which reduces channel access 
delay within DSCs; (4) the deployment, mobility, and coverage-based issues, such 
as potential areas with higher numbers of victims, should be addressed.
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