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Abstract. In this paper, we examine the pseudo-spherical curves, which
are equivalent to each other under the conformal maps preserving a fixed
point in the de Sitter 2-space, by using the Clifford algebra Cl2,1. Also,
we find the parametric equations of de Sitter loxodromes.
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1. Introduction

A 2-dimensional de Sitter space S2 is a Lorentzian manifold analog, embedded
in Minkowski space M2,1, of the Euclidean sphere. It is maximally symmet-
ric, has a positive constant curvature, and it corresponds to a one-sheeted
hyperboloid which is given by

S2
r =

{
(u1, u2, u3) ∈ M2,1 : −u2

1 + u2
2 + u2

3 = r2, r ∈ R
}

with the signature (−,+,+) . The de Sitter space is named after Willem de
Sitter (1872–1934), professor of astronomy at Leiden University [6,17].

The de Sitter space has a physical importance in the view of relativity
theory. It is the vacuum solution of Einstein’s field equations with a positive
cosmological constant that exhibits maximal symmetry [18]. It was the first
interacting quantum field theory constructed on a curved space-time, the
so-called P (ϕ)2 model on the de Sitter 2-space [3]. Also, the problem of
localizability related to the quantum field theory was investigated in S2 by
[20].

The (Clifford) geometric algebras are a type of associative algebras.
They are a powerful and practical framework for the representation and solu-
tion of geometrical problems. We can think of they as a structure generaliz-
ing the hypercomplex number systems such as the complex numbers, quater-
nions, split quaternions, double numbers. Geometric algebras have important
applications in a variety of fields including geometry, kinematics, theoreti-
cal physics and digital image processing. They are named after the English
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geometer William Kingdon Clifford. The most important Clifford algebras
are those over real and complex vector spaces equipped with nondegenerate
quadratic forms.

The Loxodromes, also known as a rhumb line, are a path on Earth, which
cuts all meridians of longitude at any constant angle. It is a straight line on
a Mercator projection map and can be drawn on such a map between any
two points on Earth without going off the edge of the map. The loxodromes
are not the shortest distance between two points on a sphere. Near the poles,
they are close to being logarithmic spirals (see [1,8,19]).

Encheva and Georgiev [7] studied some classes of curves on the shape
sphere by using a special conformal map between the two-dimensional sphere
and the extended plane. Babaarslan and Munteanu [2] examined the time-like
loxodromes on rotational surfaces in M2,1.

The content of paper is as follows. We give some basic knowledges
about Clifford algebra Cl2,1 and study the some properties of Lorentzian
plane curves in Cl2,1. Using the powerful methods of Clifford algebra, we
find a special conformal transformation between a de Sitter 2-space and the
extended Minkowski plane such that we classify the pseudo-spherical curves
on de Sitter 2-space by means of this special conformal transformation. Also,
we examine de Sitter loxodromes which are the images of hyperbolic loga-
rithmic spirals under the inverse generalized stereoraphic projection.

2. Preliminaries

The Clifford algebra Clp,q is an associative and distributive geometric alge-
bra generated by a pseudo-Euclidean vector space Mp,q equipped with a
quadratic form Q. The algebra operation xy, called the geometric product,
for any x, y ∈ Mp,q is defined by

xx = x2 = Q (x) ,

xy = x · y + x ∧ y

where x · y and x ∧ y are inner product and outer product of Mp,q and

Q (x) = −
q∑

t=1

x2
t +

p+q∑

t=q+1

x2
t for x = (x1, ..., xp+q) . We can express the inner

product and outer product in terms of the geometric product:

x · y =
1
2

(xy + yx)

x ∧ y =
1
2

(xy − yx) .

In this paper, we shall deal with the Clifford algebra Cl2,1 = gen {i, j,k}
defined by the geometric product rules

i2 = −1 and j2 = k2 = 1
ij = i ∧ j = −ji, ik = i ∧ k = −ki and jk = j ∧ k = −kj
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where {i, j,k} is the standard basis of Minkowski 3-vector space M2,1. Letting
I := ijk, any element of Cl2,1, called a multivector or geometric number, has
the form

s + tI + x + Iy,

where s, t ∈ R and x = x1i + x2j+x3k, y = y1i + y2j+y3k for xl, yl ∈ R,
l = 1, 2, 3. In other words, the multivectors in Cl2,1 are linear combinations
of scalars (0-vector) s, vectors i, j,k (1-vector), bivectors (2-vector) ij, ik, jk
and trivector (3-vector) ijk. The nondivision algebra of split quaternions is
isomorphic with the even subalgebra Cl+2,1 of the Clifford algebra Cl2,1 where
Cl+2,1 has the basis {1, jk, ki, ij}. One can find more information about the
Clifford algebras in [10,11,15].

We can study the Minkowski 3-vector space M2,1 and Minkowski plane
M1,1, which is a sub-manifold of M2,1, by means of the Clifford algebra Cl2,1

by defining as the following

M2,1 = {x = x1i + x2j+x3k :x1, x2, x3 ∈ R} and
M1,1 = {x1i + x2j :x1, x2 ∈ R} ,

respectively. The vector x is called a spacelike vector, lightlike (or null) vector
and timelike vector if x2 > 0 or x = 0, x2 = 0 or x2 < 0, respectively. The
norm of the vector x is described by ‖x‖ =

√
|x2|. Also, the inverse of any

nonnull vector x can be defined in the Clifford algebra as the following

x−1 =
x
x2

.

The Lorentzian vector cross product x × y is given by

x × y = I(x ∧ y) = det

⎛

⎝
−i j k
x1 x2 x3

y1 y2 y3

⎞

⎠ .

The equation
√

|w2| = a > 0 in M1,1 implies a four branched hyperbola
of hyperbolic radius a. The vector w = w1i + w2j can be written

w = ±a (i cosh θ + j sinh θ) = ±aieJθ

when w lies in the hyperbolic quadrants H-I or H-III, or

w = ±a (i sinh θ + j cosh θ) = ±ajeJθ

when w lies in the hyperbolic quadrants H-II or H-IV, respectively, where
J = ji. Each of the four hyperbolic branches is covered exactly once, in the
indicated directions, as the parameter θ increases, −∞ < θ < ∞ (See Fig. 1).
The hyperbolic angle θ is called argument of w and denoted by arg (w) = θ.

The hyperbolic angle can be defined by tanh−1(w2/w1) in the quadrants
H-I and H-III, or tanh−1(w1/w2) in H-II and H-IV, respectively.

The Lorentzian rotation in M1,1 can be expressed with a spinor, is a
linear combination of a scalar and a bivector. If we take any vector v =
v1i+ v2j and B = μ1 + μ2J , then the geometric product of v and B is equal
to
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Figure 1. 2-hyperbola

vB = (v1μ1 + v2μ2) i + (v1μ2 + v2μ1) j =
[
μ1 μ2

μ2 μ1

] [
v1

v2

]
,

which is a vector in M1,1. When μ1 = cosh θ and μ2 = sinh θ , the spinor
has the form B = cosh θ + sinh θJ = eθJ and vB is a vector obtained by
rotation of v through θ. The geometric product of two spinor gives a new
spinor. Thus, the spinors form a subgroup of Cl2,1.

The set of extended Minkowski plane M̃1,1 is the union of the sets M1,1

and I∞ given by

I∞ =
{

(pi ± pj)−1 : p ∈ R ∪ {∞}
}

.

We state the points in I∞ as the points at infinity. The set I∞ can be
considered as two lines at infinity that intersect at (0i + 0j)−1.

In M̃1,1, the equation of any pseudo-circle P can be written as

Aw2 + 2B · w + C = 0 (1)

or (
w +

B
A

)2

=
B2 − AC

A2
(2)

where A, C ∈ R
B2 − AC

A2
�= 0 and B ∈ M1,1. From here,

−B
A

is the centre

of the pseudo-circle and
∣
∣
∣
∣
B2 − AC

A2

∣
∣
∣
∣ is the square of the radius of pseudo-

circle in M̃1,1. A pseudo-circle also contains point(s) at infinity. These points
in I∞ are given by
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i) (p1i + p1j)
−1 where p1 =

{
A

b1+b2
if − b1 �= b2

∞ if − b1 = b2

ii) (p2i − p2j)
−1 where p2 =

{ −A
−b1+b2

if b1 �= b2

∞ if b1 = b2

where B = b1i+ b2j and notice that (∞i + ∞j)−1 �= (∞i − ∞j)−1. If A �= 0,
the pseudo-circle contains definitely two points at infinity. But, if A is equal
to zero, then P is a line and only contains one point at infinity (see [9,13] for
double numbers). Also, P is a line if and only if (0i + 0j)−1 ∈ P.

Now, we examine a direct linear-fractional (or Möbius) transformation
of M̃1,1, which are mappings T : M̃1,1 → M̃1,1 defined by

T (w) = (iaw + b) (icw + d)−1 i

respectively, where a, b, c, d ∈ M1,1 and iad−bic �= pi±pj for p ∈ R. In case
of iad−bic �= pi± pj, the Möbius transformation maps all Minkowski plane
to a single point or the lines have slope ±1. The set of these transformations
form a group under the operation of composition.

The linear fractional transformation is a composition of affine transfor-
mations w → iaw+b and multiplicative inversion w → 1/w. The conformal-
ity of this map can be confirmed by showing its components are all conformal.
Therefore, the linear fractional transformations are conformal and bijective
maps in M̃1,1. Moreover, if we assume that a line is pseudo-circle which its
radius is infinite, this transformation maps a pseudo-circle to another pseudo-
circle. If the pseudo-circle (1) pass through the point c−1id, its image becomes
a line. The image of pseudo-circle under the linear-fractional transformation
η = T (w) can be given by

(−Ad2 − 2icd · B + Cc2)η2 + 2(Aibd + −iadiB + biciB − Caic) · η (3)

−Ab2 − 2iab · B−Ca2 = 0.

3. Analysing of Lorentzian Plane Curves Via the Hyperbolic
Structure

We define the hyperbolic structure on the Lorentzian plane, which is essen-
tial implement in order to examine the differential geometry of curves. The
hyperbolic structure of M1,1 is the linear map J : M1,1 → M1,1 given by

J x = xij = (x1i + x2j) ij = −x2i − x1j, for any x = x1i + x2j. (4)

This is equivalent to multiplying z(−i), rotating z counterclockwise by 90◦ in
the complex number plane and called complex structure of Euclidean plane.
It is easy to prove that the hyperbolic structure has the following properties

J 2 = I,

(J x) · (J y) = −x · y,

J x · x = 0,

xy = x · y + (x·J y) ij (5)
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for x, y ∈ M1,1 where I : M1,1 → M1,1 is the identity linear map. Also, the

matrix representation of the hyperbolic structure can be given by
[

0 −1
−1 0

]
.

Therefore, we can state (4) via the matrix representation as
[
x1 x2

x2 x1

] [
0 −1

−1 0

]
=

[
−x2 −x1

−x1 −x2

]
.

In the rest of the paper, we will show the hyperbolic structure with J .
Let’s consider a smooth and regular non-lightlike curve γ : U → M1,1

γ (s) = γ1 (s) i + γ2 (s) j

parameterized by arc length s, where U is a open interval in R. Let’s denote
by ϕ (s) the hyperbolic angle between the tangent vector at a point and the
positive direction. The curvature at a point measures the rate of bending as
the point moves along the curve with unit speed and can be defined as

κ (s) =
dϕ

ds
. (6)

Lemma 1. Let γ = γ (t) parameterized by t be a nonnull curve and κ be the
curvature of γ. Then, we have

κ =
ε (γ̈ · J γ̇)

‖γ̇‖3 (7)

where γ̇ =
dγ

dt
and ε = 1 or −1 if γ is timelike or spacelike, respectively.

Proof. If γ is a timelike curve, we have

tanh ϕ =
dγ2

dγ1
=

γ̇2

γ̇1
, ϕ = tanh−1

(
γ̇2

γ̇1

)
.

Taking a derivative of the angle ϕ with respect to arc-length parameter s, we
get

dϕ

ds
=

(γ̇1γ̈2 − γ̈1γ̇2)
γ̇2
1 − γ̇2

2

1
√

|−γ̇2
1 + γ̇2

2 |
=

(γ̇1γ̈2 − γ̈1γ̇2)

|−γ̇2
1 + γ̇2

2 |
3
2

. (8)

If γ is a spacelike curve, we have

coth ϕ =
γ̇2

γ̇1
, ϕ = coth−1

(
γ̇2

γ̇1

)

and from here
dϕ

ds
=

(γ̇1γ̈2 − γ̈1γ̇2)
γ̇2
1 − γ̇2

2

1
√

|−γ̇2
1 + γ̇2

2 |
=

(γ̇1γ̈2 − γ̈1γ̇2)

− |−γ̇2
1 + γ̇2

2 |
3
2
. (9)

Then, we can find the formula (7) by (8) and (9). �

Lemma 2. i) Let f, g : (t1, t2) → R be differentiable functions with −f2 +
g2 = 1. Fix t0 with t1 < t0 < t2 and suppose θ0 is such that f (t0) =
sinh θ0 and g (t0) = cosh θ0. Then, there exists a unique function ϑ :
(t1, t2) → R such that
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ϑ (t0) = θ0, f (t) = sinhϑ (t) , g (t) = cosh ϑ (t) (10)

for t1 < t < t2.
ii) Let f, g : (t1, t2) → R be differentiable functions with −f2 + g2 = −1.

Fix t0 with t1 < t0 < t2 and suppose θ0 is such that f (t0) = cosh θ0 and
g (t0) = sinh θ0. Then, there exists a unique function ϑ : (t1, t2) → R

such that

ϑ (t0) = θ0, f (t) = cosh ϑ (t) , g (t) = sinh ϑ (t)

for t1 < t < t2.

Proof. i) Let w = f i + gj such that w2 = 1. If we define

ϑ (t) = θ0 + J

t∫

t0

w (u)w′ (u) du,

then

d

dt

(
jwe−Jϑ

)
= 0

so that jwe−Jϑ = c for some constant c. Since w (t0) = jeJθ0 , it follows that
c = ±1 and so we get (10). The uniqueness is trivial.

ii) The proof is similar to i). �

Corollary 3. Let γ and β be regular nonnull curves in M1,1 defined on the
same interval U and let t0 ∈ U . Choose θ0 such that

γ′ (t0) · β′ (t0)
‖γ′ (t0)‖ ‖β′ (t0)‖

= cosh θ0,
γ′ (t0) · J β′ (t0)
‖γ′ (t0)‖ ‖β′ (t0)‖

= sinh θ0

or

γ′ (t0) · β′ (t0)
‖γ′ (t0)‖ ‖β′ (t0)‖

= sinh θ0,
γ′ (t0) · J β′ (t0)
‖γ′ (t0)‖ ‖β′ (t0)‖

= cosh θ0.

Then there exist a unique differentiable function ϑ : I → R such that

ϑ (t0) = θ0,
γ′ (t) · β′ (t)

‖γ′ (t)‖ ‖β′ (t)‖ = cosh ϑ (t) ,
γ′ (t) · J β′ (t)
‖γ′ (t)‖ ‖β′ (t)‖ = sinh ϑ (t)

or

ϑ (t0) = θ0,
γ′ (t) · β′ (t)

‖γ′ (t)‖ ‖β′ (t)‖ = sinhϑ (t) ,
γ′ (t) · J β′ (t)
‖γ′ (t)‖ ‖β′ (t)‖ = cosh ϑ (t) .

In the Lemma 2, we can take f (t) = − sinh ϑ (t) and g (t) = − cosh ϑ (t)
or f (t) = − cosh ϑ (t) and g (t) = − sinh ϑ (t) if f (t0) = − cosh θ0 and g (t0) =
− sinh θ0 or f (t0) = − sinh θ0 and g (t0) = − cosh θ0, respectively. We call ϑ
the hyperbolic angle function between γ and β determined by θ0.



H. Simsek and M. Özdemir

4. Conformal Curves in the de Sitter 2-Space

In this section, we investigate a map Ψ of 2-dimensional de Sitter subspace
of M2,1 defined by

S2
r =

{
a ∈ M2,1 : a2 = r2

}

onto the extended Minkowski plane M̃1,1. Let’s choose the points A+ = rk,
A− = −rk and A0 = −rj on S2

r . The generalized stereographic projection
Γ : S2

r \∧̄ → M1,1\H1
r is defined by

Γ (a) = m =
2r2

a − rk
=

ra1

r − a3
i +

ra2

r − a3
j − rk (a3 �= r) , (11)

for a = a1i + a2j + a3k, where

∧̄ =
{
x = x1i + x2j + x3k ∈ S2

r : x3 = r
}

and

H1
r =

{
xi + yj ∈ M1,1 : −x2 + y2 = −r2

}
.

Also, the map Γ is one to one, onto and a conformal map (see [12]).
So, we can extend the map Γ to extended Minkowski plane with the map
σ : S2

r → M̃1,1\H1
r given by

{
σ (a) = m for a ∈ S2

r \∧̄
σ (∧̄) = I∞

(12)

such that σ (pi + pj + rk) = (pi + pj)−1 and σ (pi − pj + rk) = (pi − pj)−1

for all p ∈ R ∪ {∞} . The inverse generalized stereographic projection σ−1 :
M̃1,1\H1

r → S2
r can be represented by

σ−1 (m) = a =
2r2m + rm2k

m2
= −rmkm

m2

=
2xr2

m2
i +

2yr2

m2
j +

(
−2r3 + rm2

m2

)
k,

σ−1 (I∞) = ∧̄
for m = xi + yj − rk from (12).

Let be N =
{
a = a1i + a2j + a3k ∈ S2

r : a2 = −r
}

and choose the
linear-fractional transformation Tu : M̃1,1 → M̃1,1 defined by

Tu (w) = (−iuw + ru) (w + rj)−1 i (13)

where u = ri+ rj is a null vector. Then, we can establish a map Ψ = Tu ◦σ :
S2

r → M̃1,1\H1
r . The image of N under Ψ is in I∞. The transformation Ψ is

a bijective conformal map and maps A0 to (0i + 0j)−1
, A+ to ũ = ri − rj

and A− to u. The explicit expression of the map Ψ can be given by

Ψ (a) = n =
(

−2riu
a − rk

− iuk + u
)(

2r

a − rk
+ k + j

)−1

i

=
r (−a1 + a2 + r)

a2 + r
i − ra3

a2 + r
j (a2 �= −r) ,

for a ∈ S2
r \N and Ψ(N) = I∞.
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The inverse mapping Ψ−1 : M̃1,1\H1
r → S2

r can be given as the following

Ψ−1 (n) = a = 2r (iu − ni) (−iuk + u + n (ik + ij))−1 + rk

=
2r2 (r − x)

2rx − x2 + y2
i +

r
(
2r2 + x2 − 2rx − y2

)

2rx − x2 + y2
j +

−2r2y

2rx − x2 + y2
k

for n = xi + yj and Ψ−1 (I∞) = N by using Ψ−1 = σ−1 ◦ T−1
u .

We can see that the map Ψ transforms the timelike pseudo-circle P0 on
S2

r given by v2 = r2 for v = a1i + a2j ∈ S2
r to the real axis of M1,1 using

(3), (11) and (13). Let Ω be a one-parameter family of the pseudo-circles Pt

on S2
r tangent to P0 at A0 such that the equations of the image of Pt under

the generalized stereographic projection σ in M̃1,1 are given by

(v + tj)2 = (r − t)2, t ∈ R.

The one-parameter family Ω is mapped onto a bunch of the horizontal lines
under Tu using (2) and (3) in M1,1.

Let β : I → S2
r be a non-lightlike curve defined on an open interval

I ⊂ R. So, α = Ψ ◦ β : I → M̃1,1\H1
r is a non-lightlike curve in the extended

Minkowski plane. We denote the group of the conformal transformations of
the de Sitter 2-space as Conf

(
S2

r

)
.

Lemma 4. Let βi : I → S2
r , i = 1, 2 be two non-lightlike curves and

αi = Ψ ◦ βi be corresponding curves in M̃1,1\H1
r . Then if fΨ : S2

r → S2
r

is a bijection conformal map on S2
r and fΨ (β1) = β2, then f = Ψ ◦ fΨ ◦ Ψ−1

is a conformal map satisfies the equality f (α1) = α2. Furthermore, f is a
similarity if fΨ (N) = N.

Proof. Since Ψ, fΨ and Ψ−1 are conformal, the transformation f is also a
conformal map and it can be written as

f (α1) = Ψ ◦ fΨ ◦ Ψ−1 (α1) = Ψ (β2) = α2.

Also, we can say that if a conformal transformation maps I∞ to I∞ in the
extended double plane, it is a similarity (see [4] for Euclidean plane). There-
fore, f is a similarity if we have fΨ (N) = N . �

Let G be a set of the transformations fΨ ∈ Conf
(
S2

r

)
preserving a

fixed point Q ∈ S2
r . G is a subgroup of Conf

(
S2

r

)
. Moreover, we have a one-

parameter family Ωd of pseudo-circles on S2
r with the same tangent line d,

where d ⊂ LQ

(
S2

r

)
is a fixed tangent line passing through Q.

Theorem 5. Suppose that βi : I → S2
r are two non-lightlike curves, which have

the same causal characters, of class C2 defined on an open interval I ⊂ R,
(i = 1, 2) and there exist a finite subset ∅ ⊆ T = {t1, ..., tk} of I satisfying
the following conditions:

1) βi (t) �= Q for t ∈ I\T
2) βi (t) = Q for t ∈ T .

Let φi(t) = ∠ (βi (t) ,P (t)) , t ∈ I\T , be the Lorentzian angle at the
point βi (t) between βi and the unique pseudo-circle C ∈ Ωd passing through
βi (t) , and φ̃m = ∠ (β1 (tm) , β2 (tm)) be the Lorentzian angle between β1 and
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β2 at the point β1 (tm) = β2 (tm) = Q for m = 1, ..., k. Then, we have
fΨ ∈ G satisfying fΨ (β1) = β2 if and only if there is a constant φ0 such that
φ0 satisfies the following conditions:

i) φ1(t) = ±φ2(t) + φ0 for any t ∈ I\T
ii) φ̃m = φ0 for m = 1, ..., k.

Proof. We can say that there is an orientation-preserving isometry R of S2
r

satisfying R (Q) = A0 and Ωd
R→ Ω such that the conditions fΨ ∈ Conf

(
S2

r

)

and fΨ (Q) = Q are equivalent to the conditions R−1◦fΨ◦R ∈ Conf
(
S2

r

)
and(

R−1 ◦ fΨ ◦ R
)
(Q) = Q. Then, we may assume that Q = A0 and Ωd = Ω

without loss of generality.
As we know that Ψ is a conformal map and Ψ (P) is a horizontal line,

we can write

φi = ∠ (βi,P) = ∠ (αi,Ψ (P)) = arg
(

dαi/dt

‖dαi/dt‖

)

in P.
Firstly we consider that fΨ (β1) = β2 for fΨ ∈ G. We have that

f = Ψ ◦ fΨ ◦ Ψ−1 is a similarity transformation and f (α1) = α2. There-
fore, we get

dα1/dt

‖dα1/dt‖ = B
dα2/dt

‖dα2/dt‖
for some fixed spinor B. Then, arg (dα1/dt) = ± arg (dα2/dt)+φ0 or φ1 (t) =
±φ2 (t) + φ0, where B = eφ0J . From here, φ0 is the angle of the hyperbolic
rotation which is a component of f and φ̃m = φ0 for m = 1, ..., k.

Now, assume that φ1 (t) = ±φ2 (t) + φ0, φ0 =const. for t ∈ I\T and
φ̃m = φ0 for m = 1, ..., k. We consider αi, i = 1, 2, as smooth regular curves.
From (6) we can write

dφ1 (t)
dt

= ±dφ2 (t)
dt

or
∥
∥
∥
∥

dα2

dt

∥
∥
∥
∥ =

(
κ1

κ2

)∥
∥
∥
∥

dα1

dt

∥
∥
∥
∥ , (14)

where κi is the oriented curvature of αi. So, we can say that there is a transfor-
mation g ∈ Conf

(
M̃1,1\H1

r

)
such that g (α1) = α2. However, any conformal

transformation of double plane is either a composition of a Lorentzian motion
and an inversion or a similarity. Since the fact that g is not a similarity give
rise to a contradiction with the Eq. (14), we get fΨ = Ψ−1 ◦ g ◦ Ψ ∈ G and
fΨ (β1) = β2. It is obvious when α1 and α2 are straight lines. �

5. De Sitter Loxodromes

In the Euclidean plane, the unique plane curves with the constant similarity
invariant κ̃ �= 0 are logarithmic spirals defined by

ς (t) = a
(
ebt cos t, ebt sin t

)

so that they are the self-similar curves [7]. The tangent-radius angle of a loga-
rithmic spiral is a constant. Moreover, a spherical loxodrome is the pre-image
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under a stereographic projection of a logarithmic spiral in the Euclidean 3-
space [8]. In this section, we shall describe the pseudo-spherical loxodromes
on the de Sitter-2 Space.

The curves parameterized by

ς1 (t) = (aebt cosh t)i + (aebt sinh t)j or ς2 (t) = (aebt sinh t)i + (aebt cosh t)j
(15)

are self-similar curves with the constant similarity invariant κ̃ �= 0 in the
Minkowski plane [16]. Therefore, we can say that the non-lightlike curves ς1
and ς2 are the hyperbolic logarithmic spirals of Minkowski plane.

Let γ : I → M1,1 be a nonnull curve which does not pass through the
origin. There exists a unique differentiable function τ : I → R from Lemma
2 such that

γ′ (t) · γ (t)
‖γ′ (t)‖ ‖γ (t)‖ = ± cosh τ (t) ,

γ′ (t) · J γ (t)
‖γ′ (t)‖ ‖γ (t)‖ = ± sinh τ (t) (16)

or
γ′ (t) · γ (t)

‖γ′ (t)‖ ‖γ (t)‖ = ± sinh τ (t) ,
γ′ (t) · J γ (t)
‖γ′ (t)‖ ‖γ (t)‖ = ± cosh τ (t) (17)

for t ∈ I. τ (t) presents the hyperbolic angle between the radius vector γ (t)
and the tangent vector γ′ (t) . It is called τ (t) the hyperbolic tangent-radius
angle of γ.

Lemma 6. γ : I → M1,1 be a nonnull curve which does not pass through the
origin. The following conditions are equivalent:

i) The hyperbolic tangent-radius angle τ is constant;
ii) γ is a reparametrization of an hyperbolic logarithmic spiral.

Proof. Let’s γ be a timelike curve. We can write γ (t) = aieJθ and γ′

(t) = (a′i + aθ′j) eJθ so that

‖γ (t)‖ = a, ‖γ′ (t)‖ =
√

|−a′2 + a2θ′2|
Suppose that i) holds and let δ be constant value of τ (t) . If there exists the
Eq. (16) for γ, then using the last equation of (5) , we have

γ′γ
‖γ′ (t)‖ ‖γ (t)‖ =

−a′
√

|−a′2 + a2θ′2|
− aθ′

√
|−a′2 + a2θ′2|

ij

or

cosh δ =
−a′

√
|−a′2 + a2θ′2|

and sinh δ =
−aθ′

√
|−a′2 + a2θ′2|

so that
a′

a
= θ′ coth δ.

The solution of this differential equation is

a = ce(coth δ)θ

where c is a constant. From here, we can obtain

γ (t) = cie(coth δ+J)θ(t).
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which implies that γ is a reparametrization of the hyperbolic logarithmic
spiral. We can similarly follow the same operations for a spacelike curve.

One can easily find the hyperbolic logarithmic spiral defined by (15) has
a constant hyperbolic tangent-radius angle. �

A meridian on a de Sitter 2-space is branches of an hyperbola which is
obtained by the intersection of a plane contains Z-axis with S2

r . A de Sitter
loxodrome or de Sitter rhumb line is a curve on S2

r which meets each meridian
of the de Sitter 2-space at the same angle. Then, we use the generalized
stereographic projection in order to find the parametrization of a de Sitter
loxodrome.

Any pseudo-circle or line given by (1) in the extended Minkowski plane
can be given implicitly by an equation of the form

a
(
−x2 + y2

)
+ bx + cy + d = 0 (18)

where a, b, c, d are real constants. The Eq. (18) under σ−1 is mapped into

bX + cY + (ar − d/r) Z + ar2 + d = 0, (19)

which is the equation of a plane in M2,1. This plane meets the de Sitter
2-space S2

r in a meridian. In case of a = d = 0 in the Eq. (18) , we get a
straight line passes through the origin. From (19) , the plane containing the
image curve also include the Z-axis. Thus, the image of a straight line passes
through the origin is a meridian on S2

r .

Lemma 7. A de Sitter loxodrome is the image of an hyperbolic logarithmic
spiral under the inverse generalized stereographic projection.

Proof. Lemma 6 implies that an hyperbolic logarithmic spiral meets every
line passes through the origin at the same hyperbolic angle. The inverse
generalized stereographic projection transforms each of these lines into a
meridian of the de Sitter 2-space. Since σ−1 is a conformal map, it maps each
hyperbolic logarithmic spiral onto a de Sitter loxodrome. �

Using the Lemma 7, the parametrizations of de Sitter loxodromes are
given by

dlox1 (t) = σ−1 (ς1) =
1

r2 − a2e2bt

(
(2ar2ebt cosh t)i +

(
2ar2ebt sinh t

)
j

+r
(
−a2e2bt − r2

)
k
)

and

dlox2 (t) = σ−1 (ς2) =
1

r2 + a2e2bt

(
(2ar2ebt sinh t)i +

(
2ar2ebt cosh t

)
j

+r
(
a2e2bt − r2

)
k
)
.
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