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Abstract: In this article, meteorological and agricultural droughts across the Erbil province, Iraq,
were assessed using remote sensing data and satellite products. To this end, the long-term (2000–2022)
Standardized Precipitation Evapotranspiration index (SPEI) at 1- and 3-month accumulation periods
(SPEI-1 and SPEI-3) as well as the Normalized Difference Vegetation Index (NDVI) across Erbil were
utilized. While the former was retrieved from the global SPEI data repository, the latter was derived
from Moderate Resolution Imaging Spectroradiometer (MODIS) products. The spatiotemporal
variations in the SPEI indices indicated that two to nine extreme drought events occurred in the
province with an increasing northward pattern. An increasing trend in the long-term NDVI series was
also detected, having more diversity in vegetation coverage in the northern part of the province. The
relationship between the SPEI and MODIS-NDVI was found to be positive but insignificant. Thus,
we concluded that short-term meteorological droughts were not the only reason for the agricultural
droughts in Erbil. Furthermore, the climate characteristics related to the cumulative water balance
over a previous season is not an important trigger for the spatial variation in vegetation coverage
across the province.

Keywords: drought; SPEI; NDVI; Erbil; MODIS; Iraq

1. Introduction

Drought, as one of the most crucial and severe natural hazards, has a significant impact
on the economy, ecology, agriculture, and sustainable development of countries [1–4]. While
drought has been defined according to many different characteristics, Şen (2015) categorized
drought into four main types: meteorological, agricultural, hydrological, and famine. These
are, respectively, the consequences of deficits in precipitation, runoff, soil moisture, and
food [5]. To assess meteorological drought, researchers have analyzed different indices
such as the Standardized Precipitation Index (SPI; [6]), the Standardized Precipitation
Evapotranspiration Index (SPEI; [7]), the Palmer drought severity index (PDSI; [8]), the
Standardized Antecedent Precipitation Evapotranspiration Index (SAPEI; [9]), etc. For
agricultural drought assessment, the commonly used indices include (but are not limited
to) the Crop Moisture Index (CMI; [10]), the Standardized Vegetation Index (SVI; [11]), the
Enhanced Vegetation Index (EVI; [12]), and the Normalized Difference Vegetation Index
(NDVI; [13]). For a comprehensive list of drought indices and indicators, it is suggested
that the reader refer to [14].

Regarding postulate climate change, increasing drought vulnerability has been re-
ported in many studies [15,16]. The Middle East is one of the regions that has been
recognized as a hot spot for radical change in its available water resources and agricultural
production, with projections that report increasing extreme climate events such as drought
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and floods [16–20]. For example, [21] investigated meteorological drought across the East-
ern Mediterranean, Seyhan, Ceyhan, and the Asi Basins and showed that southern Turkey
was closely affected by severe water scarcity owing to climate change. In another study, [22]
reported a slight increase in minimum and maximum temperature in the northeast of
Iran, indicating higher meteorological and agricultural drought frequencies in the near
and far future. The effect of climate variation on the frequency of extreme drought events
across Ankara was reported by [16]. The negative effect of increasing temperature on
the frequency of agricultural droughts and crop production in Egypt was demonstrated
by [23]. As a result, the authors came up with the idea of changing the country’s current
infrastructure and cropping system. Similar negative impacts on agriculture, particularly
crop failure and water shortage, were reported in Syria [24].

Considering drought assessment studies in the Middle East, numerous studies have in-
vestigated trends in various drought categories during the past few decades. For example, [17]
investigated the impacts of agricultural drought on Lake Darbandikhan, Iraq, and revealed
that the Lake basin experienced the most severe drought events from 2008 to 2009. In a
similar study, [25] investigated meteorological drought variations in southern Turkey. The
authors showed that the region typically had near-normal drought conditions during the
period 1970 to 2014. In another study, [26] investigated meteorological drought across the
entirety of Turkey and showed that the total number of dry months had an increasing
trend during the period 1995–2014. Analyzing hydrological drought events across the Asi
basin using monthly streamflow data from 1954 to 2005 revealed that the number of dry
years in the period 1980–2005 was much higher than the number of dry years in the period
1954–1979 [27].

Like most of the Mediterranean countries, Iraq has been subjected to several drought
events during the past several decades even though the country had been known as a water-
rich country in the Middle East [19,28,29]. Numerous studies have shown the importance of
remote sensing, information technology, and automatic monitoring systems to sustainable
watershed development [30–32]. These approaches have already been applied to assess
drought and vegetation coverage across Iraq [33–36]. For example, [34] used the SPI and
the NDVI to develop drought risk maps for Iraq. The authors showed that approximately
24% of Iraq’s territory suffers from severe or extremely severe drought risk. In another
study, [36] investigated urban growth and the vegetation coverage extent within and
around the city of Erbil using MODIS imagery. The study showed that most of the green
area was replaced with urban areas over the period of 2000–2015. More recently, [28]
implemented the Landsat dataset to attain the NDVI, the Normalized Difference Water
Index, and the SPI to assess meteorological drought and identify changes in the green area
and water body extents across Sulaymaniyah Province, Iraq. The authors demonstrated
the occurrence of several severe droughts in the region together with a 33% decrease in
vegetative coverage by the year 2000.

In this study, our aim was to assess the spatiotemporal variation in meteorological and
agricultural drought across Erbil Province during the period of 2000–2022. Following the
above-mentioned studies, the study was conducted based on satellite/remote sensing data.
To assess meteorological drought, the associated SPEI values at 1- and 3-month accumu-
lation times were retrieved from the global SPEI drought repository “http://spei.csic.es/
(accessed on 20 December 2022)”. To assess the agricultural drought condition, the NVDI
series/maps were retrieved from the Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite. Differing from the earlier studies, which suggest the use of remote
sensing data for drought monitoring at ungauged catchments [28,35], this study for the
first time explores the effect of meteorological drought on vegetation coverage across Erbil
by evaluating the correlation between the SPEI and the MODIS-NDVI illustrating green
vegetation coverage.

http://spei.csic.es/
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2. Materials and Methods
2.1. Study Area and Data

Erbil (Figure 1) is one of the four Kurdish provinces of Iraq, located between latitudes
36◦12′11′′ and 36◦15′10′′ N and longitudes 44◦12′11′′ and 44◦15′10′′ E. The northern parts
of the province have an average elevation of about 2400 m. The province has very hot and
dry summers (June to September) with an average temperature of 39 ◦C to 43 ◦C. Autumns
are dry and mild. The average temperature in October is 25 ◦C to 30 ◦C, and it cools down
slightly in November. Winters are mild, except in the high mountains. The average high
winter temperatures are 7 ◦C to 13 ◦C and the average low winter temperatures are 2 ◦C to
7 ◦C [37]. The long-term wind rose in the province shows that wind predominantly blows
from southwest to northeast. For details on the lithology, morphology, and landscapes of
the Erbil Plain, the reader is referred to [38].
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Figure 1. (a) Location of the study area in Iraq. (b) Relief image of the study area and the distribution
of global SPEI points (green circles) within and around Erbil Province. The map also shows associated
MODIS-NDVI grid cells over the province. (c) Districts of Erbil governorate.

To attain local monthly SPEI series over Erbil, the global SPEI database, which supports
long-term SPEI series at a global scale with a 0.5◦ spatial resolution, was utilized. The
database has a multi-scale feature that provides SPEI timescales between one and 48 months.
The SPEI-1 and SPEI-3 time series for the period between January 2000 and August 2022
at 25 global grid points located within and around the province (see Figure 1b) were
extracted. The SPEI-1 and SPEI-3 represent the cumulative water balance over the previous
one and three months, respectively. Six points out of the 25—#7, #12, #13, #18, #19, and
#23—are located within the province. Thus, we called them representative points, and their
associated SPEI and NDVI values were used for a point-by-point correlation analysis in
this study.

To attain monthly NDVI series over Erbil, NASA’s AppEEARS system was used [39].
The NDVI values with the original resolution of 1.0 km in the period February 2000 to
August 2022 for all 25 points were gathered from the Terra MODIS satellite [40] (Table S1).
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The MODIS-NDVI pixel data corresponding to the representative points (#7, #12, #13,
#18, #19, and #23) were then extracted for the point-by-point analysis. The statistical
characteristics of the SPEI and NDVI series at the representative points were summarized
in Table 1. According to Table 1, negative NDVI values were measured at points 19 and 23
(i.e., Choman and Mergasur districts; Figure 1c) that represent the existence of high-flow
periods at tributaries in the mountainous and hilly regions of the province. The biggest
range (i.e., max–min) and standard deviation were also observed at point 23 with a value
of 0.70706 and 0.1938, respectively.

Table 1. Statistical features of the SPEI and NDVI series of the grid points located in Erbil Province.

Index Grid Point Longitude Latitude Minimum Maximum Mean

SPEI-1

7 43.75 35.75 −2.5532 2.1198 0.3278
12 36.25 −2.5642 2.5100 0.0284
13 44.25 −2.6883 2.2342 0.0394
18 36.75 −2.6883 2.2342 0.0394
19 44.75 −2.58476 3.0652 −0.3841
23 44.25 37.25 −2.5987 2.3334 −0.1192

SPEI-3

7 43.75 35.75 −2.1315 2.10008 0.367463
12 36.25 −3.03464 2.19109 0.006825
13 44.25 −2.36187 2.44919 0.002513
18 36.75 −2.36187 2.44919 0.002513
19 44.75 −2.7503 3.20759 −0.38800
23 44.25 37.25 −2.98458 2.48341 −0.14909

NDVI

7 43.75 35.75 0.0858 0.4731 0.169493
12 36.25 0.0995 0.6820 0.208935
13 44.25 0.1419 0.5977 0.252704
18 36.75 0.1963 0.6423 0.361581
19 44.75 −0.0537 0.5967 0.295135
23 44.25 37.25 −0.0617 0.7076 0.363180

2.2. Overview of the Implemented Drought Indices
2.2.1. SPEI

The SPEI is a multi-scalar probabilistic meteorological drought index suggested by [7].
It has been widely used in previous studies because it considers variation in both precip-
itation and temperature and therefore correlates better with hydrological and ecological
variables. Thus, long-term monthly precipitation and evapotranspiration data are required
for SPEI calculation. To calculate the SPEI, first, the water balance deficiency (Di) is acquired
by subtracting the potential evapotranspiration (PETi) from the total precipitation (P) value
at various time scales i (Equation (1)) (i.e., over one month, two months, etc.). Then, the
most suitable theoretical log-logistic cumulative density function is fitted to the Di time
series aggregated at different time scales. Finally, the SPEI is obtained as the standardized
values of the probability density function of Di. For details on the calculations of the SPEI,
the interested reader is referred to [7].

Di = Pi − PETi (1)

A critical task in assessing drought conditions based on the SPEI is the determination
of SPEI thresholds based on the severity of the SPEI, which allows the user to separate the
dry and wet periods and classify them into extreme, severe, or moderate events. Many
researchers have used the SPI thresholds for SPEI classification regardless of the fact that
the SPI thresholds were attained through the Gaussian distribution model. Inasmuch as the
global SPEI data repository uses a log-logistic distribution function to calculate the SPEI
values, the threshold values suggested by [16] were used in this study (see Table 2).
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Table 2. Classifications of wet and dry conditions using SPEI.

Classification Threshold Values 1

Extremely wet (EW) SPEI ≥ 1.83
Severely wet (SW) 1.42 < SPEI < 1.83

Moderately wet (MW) 1.00 < SPEI ≤ 1.42
Near-normal −1.0 < SPEI ≤ 1.0

Moderate drought (MD) −1.42 < SPEI ≤ −1.0
Severe drought (SD) −1.82 < SPEI ≤ −1.42

Extreme drought (ED) SPEI ≤ −1.82
1 Details on calculation of the given values are available in [16].

2.2.2. NDVI

The NDVI is a remote sensing index used to measure plant health and plant area of
coverage in a broad sense. The earliest mention of the index is in 1973 with the development
of Near-Infrared (NIR) sensors for satellites. The index is based on the reflection of the
near-infrared spectrum and the absorption of the visible red of green vegetation. The
NDVI values range between −1.0 and 1.0 and are calculated by the difference between
near-infrared reflectance and optical red reflectance relative to the sum of near-infrared and
optical red reflectance (Equation (2)). While negative values indicate snow-covered areas
and clouds or water bodies, an increase in NDVI values close to 1.0 indicates the presence
of dense forest areas [41].

NDVI =
NIR − Red
NIR + Red

(2)

where RED and NIR are the red portion (0.6–0.7 µm) and near infrared portion (0.75–1.5 µm)
of the electromagnetic spectrum, respectively.

Several satellite-based data repositories, such as USGS Earth Explorer, provide re-
motely sensed images that can be used for calculating the NDVI taking NIR and RED bands.
The gridded daily NDVI data are also available from NOAA CDR (from 1981 onward).
In this study, the long-term NDVI values were collected for the study area from the Terra
MODIS satellite. There is no absolute coverage that can be assigned to the NDVI. Here, we
interpret NDVI values as listed in Table 3. The higher these ratio outputs are, the more
actively the plant is growing.

Table 3. NDVI value variations according to surface coverage [41].

Surface Coverage NDVI Range

Very healthy vegetation 0.66–1.0
Moderate healthy vegetation 0.33–0.66

Sparse vegetation (Unhealthy) 0.0–0.33
No vegetation (dead vegetation) −1.0–0.0

2.3. Adopted Methodology

Figure 2 illustrates the general methodology implemented in the present study, show-
ing the underlying process of spatiotemporal drought and vegetation coverage monitoring
across Erbil.
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As previously mentioned, at the first step, SPEI Global Drought Monitor and MODIS
web were used to respectively retrieve monthly SPEI and NDVI series across the province.
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As the spatial resolutions of SPEI Global Drought Monitor and MODIS-NDVI images are
different, the NDVI data corresponding to the exact location of the representative points
were extracted to conduct a point-by-point timeseries and statistical analysis. Then, to
evaluate the spatial variation in the monthly NDVI within the boundaries of the province,
the entire area was divided into 10 km × 10 km cells (Figure 1b, black grids). In this
stage, the ArcGIS model builder was applied to calculate the mean NDVI values (NDVIm
hereafter) at each cell and determine the percentage of each individual coverage type
(land use) in the province. Moreover, using the co-kriging approach, spatial variation in
the point SPEI values was interpolated across the province regarding its digital elevation
model (topography map). Traditional interpolation (mapping) methods such as simple
areal weighting only use data available at the target location and fail to use existing spatial
correlations between the primary attribute to be estimated and secondary data points.
As the geostatistical co-kriging method has the advantage of covariance between two or
more regionalized variables, and the representative SPEI points are sparse, but the related
secondary information (elevation) is abundant, it yields more reliable SPEI estimations
because it capitalizes on the strengths of both data types.

To reflect the inter-annual/annual vegetation volatility, the coefficient of variation
(CV) of the NDVI data at each pixel for the period 2000–2022 was also calculated through
Equation (3) as suggested in the literature [42,43].

CV =
σ

NDVIm
(3)

where σ denotes the standard deviation of NDVI series. Eventually, cross-correlation
analysis between NDVIm and the spatial distribution of SPEI values was performed to
detect the response of vegetation coverage to meteorological drought. Time series plots are
suitable for reckoning crop stage or growing phase (i.e., seeding, vegetative development,
flowering, grain-filling, etc.), and cross-correlation analysis helps in realizing when periods
of dryness or drought stress occurred during the growing season.

3. Results
3.1. Spatiotemporal Variation in SPEI

The SPEI time series attained at each representative point are depicted in Figure 3. The
figure indicates that dry and wet periods did not necessarily occur in the same months at
each point. Moreover, the drought frequency is not identical. Thus, it is concluded that
the province has different microclimates in its various parts. To specify the exact number
of different drought events, the dry periods (SPEI ≤ −1.0) at each point, the associated
time series were classified into MD, ED, and SD classes according to the thresholds given
in Table 2. The total number for each event is tabulated in Table 4. In addition, the table
provides the total length of the event that occurred during the monitoring period.

Table 4. Numbers and total duration of drought events observed at representative points in the
period 2000–2022.

Point
SPEI-1 SPEI-3

MD SD ED MD SD ED

7 10 (12) 1 6 (7) 2 (1) 9 (12) 3 (3) 2 (5)
12 21 (25) 7 (7) 5 (7) 17 (29) 6 (7) 4 (8)
13 23 (26) 8 (8) 6 (6) 15 (21) 10 (12) 4 (11)
18 23 (26) 8 (8) 6 (6) 15 (21) 10 (12) 4 (11)
19 41 (44) 21 (21) 20 (25) 16 (25) 21 (41) 12 (21)
23 30 (34) 10 (11) 9 (13) 23 (27) 12 (14) 6 (13)

1 The values given in parenthesis denote total duration of each specific drought in month. For example, 10 (12)
means that 10 events occurred with total duration of 12 months.
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Considering the SPEI-1, the maximum number of MD events was 41, which occurred
at point 19 (Mergasur district). Indeed, the district suffered from a total of 34 months of
moderately dry conditions during the period from 2000 to 2022. The maximum numbers of
SD and ED events were observed at the same location, with 21 and 20 events, respectively.
Although the number of the observed ED events was one event less than those of SD, it
lasted four months more at this point. According to the SPEI-3, the maximum number of
MD, SD, and ED events was observed at points 23 and 19. The lower the drought severity,
the higher its duration. During the past 22 years, the longest MD was seen at point 12
(Khabat district). Surprisingly, the cumulative length of SD events (41 months) is strikingly
higher than those of MD and ED (29 and 21 months, respectively). Considering both 1- and
3-month timescales, the table also indicates that points/districts located at higher latitudes
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experienced more drought events than the southern regions of the province. The table also
shows that the total number of drought events decreases as a higher accumulation period
is considered at each point.

Figure 4 lists the results of correlation analysis (Pearson coefficients; r) performed using
the SPEI series at each point. A strong positive correlation exists among all points except
point 19 (Choman City), which represents the highest altitudes (~1500 m above sea level) of
the province. Focusing on SPEI-1 (Figure 4a), a slightly negative correlation between point
7 (Makhmur district) and point 19 (Choman highlands) is seen. As point 7 is at the lowest
altitude (~250 m above sea level), such a negative correlation may be associated with the
elevation difference between the southern and northern parts of the province.
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Figure 4. Correlation matrix (5% critical value (two-tailed) = 0.1190 for n = 272): (a) SPEI-1; (b) SPEI-3.

To assess the range of the SPEI and the density of wet and dry periods at the represen-
tative points, box diagrams were plotted as shown in Figure 5. Overall, the figure indicates
that the wet and dry spells are distributed symmetrically around the median at points 12,
13, and 18. In these points, the mean and median are approximately equal to zero, and
the interquartile range (Q3–Q1) is within the near-normal category (see Table 2). From a
geographical perspective, points 12 and 13 are at the same latitude. Although point 18
is located at a higher latitude than point 13, the figure surprisingly shows similar SPEI
distributions at these points. This implies that the middle part of the province, where the
city of Erbil is located, has the same microclimate. By contrast, different climates were
observed in the southern and northern parts of the province. While in the southern regions
(representative point 7) the median shifted upward, points 19 and 23 show a negative
median and mean value. The outliers are mostly seen on the negative side, indicating a
higher frequency of ED than flooding events in the province.
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Figure 6 illustrates the spatial variation in the most radical ED and EW events that
occurred during the study period independently of the month of the year. Regarding both
SPEI-1 and SPEI-3, the figure, in general, indicates that eastern Erbil experienced the most
radical wet (EW), but the least dry (ED) events. These areas are the foothills of the Zagros
Mountain range. Since the prevailing wind in the region blows from the southwest to the
northeast, the authors believe that the main cause of such a pattern in this region is the
orographic phenomenon. Regarding ED (Figure 6a,c), the hotspot (yellow to red colors) in
both the SPEI series is the Koysincaq district in the southeast, which experiences the worst
drought conditions with a severity less than −4.0.
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3.2. Spatiotemporal Variation in NDVI

The monthly NDVI time series attained at each representative point are depicted in
Figure 7. In addition, the attained NDVIm time series for a total of generated 183 cells are
presented in Table S2. Figure 6 indicates different patterns in different points ranging from
no vegetation (desert) to very healthy vegetation (dense forest); however, an increasing
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trend is seen at all points, particularly at point 18. At point 7, the NDVI varies in the range
of 0.1 to 0.45 with a mean of 0.17 (see Table 1) indicating sparse vegetation. At point 12, the
total green area is slightly higher than point 7, but the dense green vegetation (NDVI ≥ 0.6)
merely observed in some months is associated with the growing crop yields. Similar
conditions are observed at representative points 13, 18, and 19. The higher positive values
at points 19 and 23 together with the negative ones respectively show denser vegetation
and cloud cover in these districts (Choman, Soran, and Mergasur).
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Figure 7. NDVI variation across Erbil in the period February 2000 to August 2022 at the representative
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Figure 8a illustrates the results of the cross-correlation analysis performed using the
monthly NDVI series at the representative points. A strong positive correlation (r ≥ 0.7) exists
among points 7, 12, and 13. By moving away from point 7, the associated values gradually
decrease and achieve negative ones at points 19 and 23. This indicates that vegetation growth
in southern Erbil increases when cloud-dense/snow cover decreases in the northern part of
the province. Additionally, the range of NDVI for the representative points across Erbil is
evaluated in Figure 8b. It is observed that point 23 had the highest diversity in monthly land
coverage (interquartile range IQR = 0.22). Furthermore, an increasing trend in all quartiles is
seen from the southern points (#7) to the northern points (#23) with approximately the same
median at points 18 and 19, which are in the same latitude.
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The spatial distribution of the average NDVI and the associated coefficient of variation
(CV) for the growing season from 2000 to 2022 are shown in Figure 9. Figure 9a shows
that the NDVI gradually increased from south to north. The transition zone between the
Mergasur and Soran districts had the highest NDVI values, while the Soran and Choman
highlands had the lowest ones. The figure also indicates that transitions between the Erbil,
Khabat, and Makmur districts had the highest NDVI value, although surface coverage
remains within the moderate healthy vegetation range. Evaluation of the descriptive
statistics of the NDVI values for the study area pointed out that the Soran, Choman, and
Ravanduz districts had a similar spatial pattern, having the highest vegetation coverage
variability. As depicted in Figure 9b, we classified the associated CV values into five
categories (i.e., lower (CV ≤ 0.394), low (0.394 < CV ≤ 0.789), moderate (0.78 < CV ≤ 1.58),
high (1.58 < CV ≤ 1.97), and higher (CV ≥ 1.97)) using 20, 40, 60, and 80 quantiles to
compare surface coverage variability precisely. According to the figure, areas with a higher
NDVI exhibited lower variation during the period 2000–2022. Similarly, the lower the
NDVI, the higher the variation. Assessment of the quantiles of CV values revealed that
most of the study area had low and lower variability: 64.68% and 29.94%, respectively.
Lands with moderate, high, and higher variations cumulatively encompass 5.38% of the
province, which mostly extended to the northeastern regions of the study area along the
Iraq and Iran borders.
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3.3. Response of Vegetation Coverage to Meteorological Drought

It is a rational assumption to suppose that not only the preceding month’s water deficit
(SPEI-1) but also the climate characteristics related to the cumulative water balance over
one previous season (SPEI-3) may play a significant role in clarifying the spatial distribution
of vegetative coverage. Therefore, to estimate the cumulative effect of precipitation and
evaporation on vegetation coverage across the study area, the spatial distribution of the
Pearson coefficient, r, between the drought indices and the MODIS-NDVI time series are
depicted in Figure 10.
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Comparing the maximum correlation attained for each cell shows higher correlations
existing between SPEI-3 and the NDVI. In both, the maximum correlation is seen in eastern
Erbil, where the most extreme wet events also happened (see Figure 5). Thus, it is concluded
that the correlations are generally stronger during the growing season. Interestingly, the
location of maximum correlation is in the southeastern district, where the most radical drought
events (SPEI≤ −2.8) have occurred. Inasmuch as the attained correlation values remain in
the range of −0.30 to +0.35, we cannot conclude a strong linear relationship between the
current-month NDVI and that of the month ahead as well as the season-ahead SPEI values.
This is generally in agreement with previous studies that found that the NDVI has a low and
insignificant correlation coefficient with the SPI in the Iraqi Kurdistan Region [28].

4. Discussion

Among the variety of meteorological indices, the SPEI has received striking attention
in recent studies, and several researchers have attempted to produce the SPEI with a higher
resolution for different regions. For example, [44] produced a high spatial resolution SPEI
dataset (5 km) that covers the whole of Africa at a monthly temporal resolution from 1981
to 2016. In a similar study, [45] produced an SPEI dataset for Central Asia with a special
resolution of 5 km with different time scales in 1981–2018. Despite providing a higher
spatial resolution, these studies have a limited time span, and the produced SPEI data
are not updated over time. The main advantages of the global SPEI dataset used in this
study are (i) its continuing feature and (ii) its global areal extent. At the end of each month,
the associated SPEI is calculated and added to the relevant repository. Thus, more recent
data are available to assess drought conditions in a larger domain on the earth. This is of
paramount importance where reliable and long-term observatory meteorological stations,
such as Erbil Province, are not available. On the contrary, the dataset suffers from a coarser
spatial resolution that may include uncertainties when quantitative SPEI estimates are
required for catchment-scale studies. Following [46], the authors believe that the dataset is
reliable enough to provide a general perspective on the long-term spatiotemporal variation
in meteorological drought across Erbil Province. It is worth mentioning that downscaling
the global SPEI dataset to station scale may yield more accurate estimations, provided that
accurate records of observed precipitation and evapotranspiration are available.
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Over the past decades, only a few studies have investigated long-term spatiotemporal
variation in meteorological and agricultural drought across Iraq. Regarding the Erbil
governorates, the correlation analysis showed that the relationship between the SPEI and
the MODIS-NDVI is positive but insignificant. This finding is in line with the results of [36],
which demonstrated no evidence of a correlation between any climate variable compared
to the vegetation indices over the city of Erbil and its surroundings. A similar conclusion
was reported by [28], in which a correlation analysis between the SPI and NDVI was
carried out. Although the multiple time scales and multivariable index used in our study
reflect a clearer picture of the role of meteorological drought conditions in the province in
comparison to [28], both studies reveal that short-term meteorological drought is not the
only reason for the vegetative droughts in Erbil Province.

Our study was limited to the use of single representative meteorological (i.e., SPEI)
and agricultural (i.e., NDVI) drought indices. Future studies may consider a variety of
drought indices such as the Reconnaissance Drought Index [47], which might reveal better
correlations between meteorological and agricultural drought.

5. Conclusions

The results of the spatiotemporal SPEI analysis demonstrated that the regions located
at higher latitudes were subjected to more drought events than those located in the southern
regions of the province. As the dominant wind direction is northward, we concluded that
drought propagation was parallel to the local wind direction in the province. Lasting for
five months (April to August) with an average severity of −1.88, the province experienced
its longest ED event in the year 2011; however, the most radical ED, having the highest
average severity of −2.70, occurred in 2021 and lasted for three months (April to June). The
results also pointed out that the frequency and severity of meteorological droughts have
increased in the recent decade (2011–2022) compared to the preceding decade (2000–2010).

The NDVI assessment results revealed that the MODIS-NDVI values had a slightly
increasing trend with gradually increasing values in northern districts. The highest NDVI
values at the representative points were 0.7076 in April 2018, 0.682 in March 2015, 0.642
in April 2019, 0.5981 in April 2015, 0.5967 in April 2018, and 0.431 in February 2019 for
points 23, 12, 18, 13, 19, and 7, respectively. Our findings showed that vegetation growth in
southern Erbil increases when cloud-dense/snow cover decreases in the northern part of
the province. The spatial distribution of the average NDVI and their associated CV for the
growing season confirmed that the southern districts had surface coverage within the no
vegetation to sparse vegetation range. This pattern gradually changes to moderate healthy
vegetation at higher latitudes. While the northern Koysinjaq and Shaqlava districts had
the lowest variability, the Choman district at Iran’s border showed the highest variability
during the study period. Ultimately, the results of the cross-correlation analysis between
the drought indices and the NDVI time series demonstrated that they are not strongly
correlated. Thus, the temporal variations in the NDVI are not affected by short-term (up to
3 months) water deficit. This could perhaps be owing to the plant types that can withstand
water deficits, thus meaning that vegetation reaction to water deficit is slow.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15086687/s1, Table S1: Monthly MODIS-NDVI values at 25 points
within and around the Erbil Province recorded in the period of February 2000 to August 2022; Table
S2: Monthly MODIS-NDVI time series interpolated for a total of 183 cells (10 km × 10 km) across the
Erbil Province.
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5. Şen, Z. Applied Drought Modeling, Prediction, and Mitigation; Elsevier: Amsterdam, The Netherlands, 2015.
6. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th

Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183.
7. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standard-

ized Precipitation Evapotranspiration Index. J. Climate 2010, 23, 1696–1718. [CrossRef]
8. Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 30.
9. Li, J.; Wang, Z.; Wu, X.; Xu, C.; Guo, S.; Chen, X. Toward Monitoring Short-Term Droughts Using a Novel Daily Scale, Standardized

Antecedent Precipitation Evapotranspiration Index. J. Hydrometeorol. 2020, 21, 891–908. [CrossRef]
10. Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161.

[CrossRef]
11. Peters, A.J.; Walter-Shea, E.A.; Ji, L.; Vina, A.; Hayes, M.; Svoboda, M.D. Drought monitoring with NDVI-based standardized

vegetation index. PE&RS 2002, 68, 71–75.
12. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance

of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
13. Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global vegetation indices from the NOAA-7 meteorological satellite. J. Clim. Appl.

Meteorol. 1984, 23, 491–494. [CrossRef]
14. Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought indices and indicators revisited. Arab. J. Geosci. 2019, 12, 1–12. [CrossRef]
15. Yu, W.; Li, Y.; Cao, Y.; Schillerberg, T. Drought assessment using GRACE terrestrial water storage deficit in Mongolia from 2002 to

2017. Water 2019, 11, 1301. [CrossRef]
16. Danandeh Mehr, A.; Sorman, A.U.; Kahya, E.; Hesami Afshar, M. Climate change impacts on meteorological drought using SPI

and SPEI: Case study of Ankara, Turkey. Hydrol. Sci. J. 2020, 65, 254–268. [CrossRef]
17. Fadhil, A.M. Drought mapping using geoinformation technology for some sites in the Iraqi Kurdistan region. Int. J. Digit. Earth

2011, 4, 239–257. [CrossRef]
18. Gaznayee, H.A.A.; Al-Quraishi, A.M.F. Analysis of agricultural drought’s severity and impacts in Erbil Province, the Iraqi Kurdistan

region based on time series NDVI and TCI indices for 1998 through 2017. J. Adv. Res. Dyn. Control. Syst. 2019, 11, 287–297. [CrossRef]
19. Hashim, B.M.; Abd Alraheem, E.; Jaber, N.A.; Jamei, M.; Tangang, F. Assessment of Future Meteorological Drought Under

Representative Concentration Pathways (RCP8.5) Scenario: Case Study of Iraq. Knowl.-Based Eng. Sci. 2022, 3, 64–82.
20. Almoussawi, Z.A.; Wafqan, H.M.; Mahdi, S.R.; Dhahim, A.; Ahmed, O.N.; Abdulhasan, M.M.; Freeh, K.B. The Effect of Adoption

of Technology, Technology Diffusion, Human Capital, Formation of Capital and Labor Force in the Production of Agriculture
Products in Iraq. AgBioForum 2022, 24, 144–152.

21. Topcu, E.; Seckin, N. Drought Analysis of the Seyhan Basin by Using Standardized Precipitation Index SPI and L-moments.
J. Agri. Sci. 2016, 22, 196–215.

22. Sayari, N.; Bannayan, M.; Alizadeh, A.; Farid, A. Using drought indices to assess climate change impacts on drought conditions
in the northeast of Iran (case study: Kashafrood basin). Meteorol. Appl. 2013, 20, 115–127. [CrossRef]

23. Mahmoud, M.A. Impact of climate change on the agricultural sector in Egypt. Conv. Water Resour. Agric. Egypt 2017, 74, 213–227.
24. Femia, F.; Werrell, C. Syria: Climate change, drought and social unrest. Cent. Clim. Secur. 2012, 29, 2–5.
25. Dinç, N.; Aydins, akir, K.; Is, ık, M.; Büyüktas, , D. Drought analysis of Antalya province by standardized precipitation index (SPI).

Derim 2016, 33, 279–298.
26. Yıldız, O. Spatiotemporal analysis of historical droughts in the Central Anatolia, Turkey. Gazi Univ. J. Sci. 2014, 27, 1177–1184.

https://www.spei.es
https://doi.org/10.1080/02508068508686328
https://doi.org/10.3390/su15021095
https://doi.org/10.1029/2020EF001547
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1175/JHM-D-19-0298.1
https://doi.org/10.1080/00431672.1968.9932814
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1175/1520-0450(1984)023&lt;0491:GVIFTN&gt;2.0.CO;2
https://doi.org/10.1007/s12517-019-4237-z
https://doi.org/10.3390/w11061301
https://doi.org/10.1080/02626667.2019.1691218
https://doi.org/10.1080/17538947.2010.489971
https://doi.org/10.5373/JARDCS/V11I11/20193198
https://doi.org/10.1002/met.1347


Sustainability 2023, 15, 6687 15 of 15
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