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Abstract
RNA-binding proteins (RBPs) play key roles in post-transcriptional regulation of mRNAs.

Dysregulations in RBP-mediated mechanisms have been found to be associated with many

steps of cancer initiation and progression. Despite this, previous studies of gene expression

in cancer have ignored the effect of RBPs. To this end, we developed a lasso regression

model that predicts gene expression in cancer by incorporating RBP-mediated regulation

as well as the effects of other well-studied factors such as copy-number variation, DNA

methylation, TFs and miRNAs. As a case study, we applied our model to Lung squamous

cell carcinoma (LUSC) data as we found that there are several RBPs differentially

expressed in LUSC. Including RBP-mediated regulatory effects in addition to the other fea-

tures significantly increased the Spearman rank correlation between predicted and mea-

sured expression of held-out genes. Using a feature selection procedure that accounts for

the adaptive search employed by lasso regularization, we identified the candidate regula-

tors in LUSC. Remarkably, several of these candidate regulators are RBPs. Furthermore,

majority of the candidate regulators have been previously found to be associated with lung

cancer. To investigate the mechanisms that are controlled by these regulators, we predicted

their target gene sets based on our model. We validated the target gene sets by comparing

against experimentally verified targets. Our results suggest that the future studies of gene

expression in cancer must consider the effect of RBP-mediated regulation.

Introduction
Aberrant gene expression is a main feature of cancer development. Characterizing the regula-
tory events that lead to gene expression changes during cancer development is critical for can-
cer research. Differential gene expression in cancer can occur due to several factors including
copy-number variation (CNV), DNA methylation changes, and alterations in transcriptional
and post-transcriptional regulatory mechanisms. Among these factors, post-transcriptional
regulation (PTR) has gained significant importance due to its emerging roles in cancer biology.

PTR is mediated by the interactions of RNA-binding proteins (RBPs) and microRNAs
(miRNAs) with target mRNAs through short sequence and/or structure motifs. Recent studies
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have found that RBPs are key regulators controlling every step of RNA metabolism including
RNA splicing, transport, localization, decay and translation. More than 850 RBPs have been
identified in the human genome [1, 2]. Recent advances in experimental methods that charac-
terize the binding sites of RBPs have significantly expanded our knowledge of in vivo and in
vitro RBP binding preferences [3, 4]. This recent explosion of knowledge on RBP binding sites
provide opportunities to study RBP-mediated regulation in greater detail.

Several RBPs have been found to be implicated in cancer [5]. For example, overexpression
of KHDRBS1 (Sam68) has been revealed in various cancer types including breast, prostate,
colorectal and lung cancer cells [6–8]. KHDRBS1 is found to mediate the alternative splicing of
oncogenes. ELAVL1 is another well-known RBP that is found to be associated with tumorigen-
esis by regulating the stability and translation of key growth factors and proto-oncogenes [9,
10]. Overexpression of ELAVL1 has been observed in many cancer types [11, 12]. Recently,
FXR1 is found to regulate tumor progression in lung cancer, and is identified as a driver of the
3q amplicon, the most frequent genomic alteration in squamous cell lung cancers [13]. These
and many other example indicate that dysregulation of the function or the expression of RBPs
has profound implications for cancer development.

Recently developed computational models that study gene expression in cancer have mainly
focused on transcriptional regulation and miRNA-mediated regulation. For instance, Setty
et al predicted expression changes in glioblastoma (GBM) with a lasso-regularized regression
[14]. In addition to CNV and methylation changes, they included features that correspond to
TF binding sites from TRANSFAC filtered by DNA hypersensitive regions, and miRNA bind-
ing sites obtained from scanning with 7-mer seed sequences. Their model predicted a number
of key regulators from TFs and miRNAs that are predictive of survival rate in GBM. Jacobsen
et al focused on miRNA-based regulation, ignoring transcriptional-regulation [15]. They
looked at the relation between the expression of miRNAs and mRNAs in tumors from 11
human cancer types in TCGA, and identified a pan-cancer miRNA-mRNA network. Li et al
proposed a two-stage regression framework that combines data from TCGA and ENCODE to
predict gene expression in Acute Myeloid Leukemia (AML) [16]. Their model revealed a num-
ber of TFs and miRNAs as candidate regulators of AML. To the best of our knowledge, there is
still no study that investigates the effects of RBP-mediated regulation in cancer.

In this study, we propose to explain gene expression in cancer with a statistical model that
incorporates RBP-based regulation in addition to CNV, DNA methylation and the regulatory
effects of transcription factors and miRNAs. As a case study, we applied our model to Lung
squamous cell carcinoma (LUSC) dataset, as we found that there are a large number of differ-
entially expressed RBPs in this cancer type. By comparing the performance of our full model
with partial models that exclude one of the feature groups (e.g. TFs, CNV etc.), we show that
the added predictive value of RBPs is higher than all the other feature groups. Following up on
this result, we applied a feature selection procedure to identify the RBPs as well as other factors
that play a key role in LUSC. Importantly, majority of our predicted candidate regulators are
previously found to be associated with lung cancer, and are differentially expressed. Subse-
quently, we determined the targets of these candidate regulators, and compared against experi-
mentally determined targets. The results of this study suggest that future studies of gene
regulation must consider the effects of RBP-mediated regulation.

Materials and Methods

Data integration and preprocessing
All mRNA and miRNA expression data were obtained from TCGA data portal [17]. For regres-
sion analysis, scaled estimate column from RNA-seq (level 3) datasets were downloaded. Scaled
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estimate data were multiplied by 106 to obtain relative abundance (in Transcripts Per Million
[TPM]). Genes that have� 0.1 TPM in more than 70% of the samples were removed. TPM val-
ues were log2 transformed for subsequent analysis. For miRNA expression, Illumina HighSeq
(387 samples) and Illlumina GA (136 samples) datasets were combined. GISTIC2-processed
DNA copy-number data and DNAmethylation (Level 4) data were retrieved from Firehose
(http://gdac.broadinstitute.org/runs/analyses__2014_10_17)). For each gene, the methylation
probe that shows the strongest negative correlation (Pearson correlation coefficient) between
methylation “Beta-value” and mRNA expression across all samples was selected. We used
Human Proteome Atlas to determine the RBPs and TFs that are expressed in lung cancer [18].
Human Proteome Atlas provides immunohistochemistry results on 12 tumors for each cancer
type [19]. RBPs and TFs that show expression in at least one of these tumors were considered
as expressed.

Differential expression analysis
We downloaded datasets for cancer types that have sufficient number of paired samples (i.e.,
>15 matched tumor-normal samples). According to this criteria, the following 13 cancer types
were selected: BLCA, BRCA, COAD, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD,
THCA and UCEC (S1 Table). We downloaded raw counts from RNA-seq (level 3) datasets.
We filtered out the genes that are not expressed in the majority of the samples by removing
those genes with� 1 read count per million in more than 50% of samples [20]. We used edgeR
to calculate the log fold changes (LFCs) of genes that code for RBPs within each cancer type
[21]. In particular, we determined differential expression using the generalized linear model
likelihood ratio test (using glmFit and glmLRT functions). We defined differentially expressed
RBPs as those genes with FDR cutoff< 0.05 and |LFC|> 0.5. We plotted the LFCs of RBPs
across the cancers as a heat map and performed row and column clustering using heatmap.2
function in R (hierarchical clustering performed with Pearson correlation distance and average
linkage). We performed a similar analysis to identify differentially expressed miRNAs after fil-
tering miRNAs that have less than 1 read count per million miRNA reads in more than 70% of
samples.

Target prediction of regulatory elements
Transcription factors. Promoters were defined as the ±2000 bp region around the tran-

scription start sites (TSS) of genes based on Refseq annotation. Position frequency matrices
(PFMs) of human transcription factors (for 382 TFs) were obtained from JASPAR database
[22]. We used the motif scanning tool FIMO fromMEME-Suite [23] to map the binding sites
of transcription factors along the promoter regions (selected matches with p-value< 1e − 4).
Next, we counted the sites that intersect with DNaseI hypersensitive regions determined in
A549 cells [24] to define the feature vectors of TFs.

MicroRNAs. We downloaded the human 3’UTRs compiled by Agarwal et al [25]. These
3’UTRs were derived by extending Gencode annotations (Harrow et al., 2012) with recent data
on 3’UTR isoforms [26]. To define the miRNA target sites, we downloaded conserved targets
from the recently released TargetScan database (v7, [25]). The input vector for a miRNA fea-
ture includes the counts of target sites on each gene.

RNA-binding proteins. To determine the targets of RBPs, we downloaded the PFMs of 85
human RBPs from the RNAcompete paper [4]. We identified RBP sites by scanning human
3’UTRs with the top 10 n-mers generated by these PFMs. Moreover, we downloaded the motifs
for the following well-known RBPs from RBPDB database [27]: HNRNPAB, PUM1, PUM2,
ELAVL2, KHSRP, ZFP36, AUF1 and CUGBP. Sites of these RBPs were determined similarly.
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We downloaded CLIP-seq and PARCLIP data for a list of RBPs (ELAVL1, FMR1, FUS, FXR1,
FXR2, hnRNPC, IGF2BP1-3, LIN28, PTBP1, PUM2, QKI, SRSF1, TIA1) from starBase data-
base [28]. In addition to these RBP specific CLIP datasets, we downloaded gPARCLIP-deter-
mined peaks that correspond to regions occupied by any of the expressed RBPs in HEK293
cells [1]. We intersected CLIP- and gPARCLIP-determined peaks with human 3’UTRs. To
account for background binding bias in CLIP-based techniques (identified in [29]) we excluded
the parts of peaks that overlap with regions that correspond to background binding. Next, we
determined the RBP sites that are located in these peaks.

LUSC dataset
After compiling all the datasets for LUSC, we first intersected the CNV, DNAmethylation and
binding datasets of TFs, RBPs and miRNAs. This resulted in 12,436 genes and 362 tumor sam-
ples in common. Then, we removed those regulatory factors that have no binding site in any of
these genes. Finally, we merged the features that have identical input vectors (i.e., identical
counts across the genes) to a single feature (S2 Table). In the end, we had 204 TFs, 164 miR-
NAs, 49 RBPs as our regulatory features.

Feature selection
In order to determine candidate regulators in LUSC, we performed a feature selection proce-
dure specifically developed for lasso-regularized regression models. We downloaded the Selec-
tive Inference package from R and used the fixedLassoInf function to calculate selective p-
values for a given lambda (i.e. regularization constant) value. Here, we used the lambda that is
selected with cv.glmnet function. We repeated this procedure for each sample independently,
and calculated, for each feature, the number of times a significant p-value (p-val< 0.05) is
obtained.

Identification of target gene sets of candidate regulators
We summed the changes in prediction error of each gene across the samples when a regulator
is removed. To estimate the significance of the error changes, we repeated this calculation with
shuffled feature matrices 5000 times [14]. The shuffling was done for each column indepen-
dently. We calculated an empirical p-value (for a gene-regulator pair) by comparing the error
change obtained from the original feature matrix with the distribution of error changes that are
obtained from shuffled feature matrices. The target gene set of a regulator is defined as the
genes with FDR-corrected p-value<= 2e − 4. We compared the predicted target genes of RBPs
against CLIP-based targets. To evaluate the predicted targets of miRNAs, we downloaded
experimentally verified targets fromMirTarBase database [30]. We grouped the experimentally
verified targets based on the type of evidence. Namely, targets identified with reporter assay,
western blot and qPCR provide strong evidence; whereas targets identified with approaches
such as microarray, NGS-based methods, pSILAC provide less strong or weak evidence.

Results

Differentially expressed RBPs in cancer
Cancer is commonly characterized by the differential expression of several master regulators.
In particular, aberrant expression of RBPs have been found to be associated with cancer initia-
tion and progression [31]. To investigate the expression changes of RBPs in cancer systemati-
cally, we downloaded matched tumor-normal samples for 13 cancer types (see S1 Table for a
summary of these datasets). We used edgeR to identify differentially expressed genes across the
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matched samples for each cancer (see S3 Table for results). Fig 1 shows the log fold changes
(LFCs) of RBPs that are differentially expressed in at least one of these cancer types (LFC> 0.5
or LFC< −0.5, FDR-corrected p-value< 0.05). We observed that a number of well-known
RBPs (e.g. PTBP1, KHSRP, ELAVL1, PABPC1, PABPC3, HNRNPAB) display increased
expression in majority of cancer types. Among these RBPs, ELAVL1 has been previously found
to have elevated levels of expression in cancer [32]. On the other hand, RBPs such as CPEB4,

Fig 1. Differentially expressed RBPs in cancer. This heatmap shows the log fold expression changes of RBPs across matched tumor-
normal samples (calculated with edgeR [21]). Rows are the RBPs that are differentially expressed in at least one cancer type. Columns
correspond to different cancer types. Rows and columns are clustered with hierarchical clustering.

doi:10.1371/journal.pone.0155354.g001
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RBMS3, QKI and ZFP36 show decreased expression across the majority of cancer types. Inter-
estingly, FXR1 is found to be overexpressed most in LUSC compared to the other cancer types.
Indeed, a recent study revealed FXR1 as a driver for non-small cell lung cancer (NSCLC), and
showed that increased FXR1 promotes tumor progression, and is associated with poor survival
[13]. Lastly, we observed that IGF2BP2 and IGF2BP3 display strong up- or down-regulation of
expression among the different cancer types. In particular, both IGF2BP2 and IGF2BP3 are
overexpressed significantly in LUSC. Proteins that belong to the IGF2BP family are known to
be expressed mainly in the embryo; however, they have been found to be re-expressed in sev-
eral cancer types including lung cancer [33]. We also observe interesting patterns when we
cluster the cancer types based on LFCs of RBPs. Interestingly, LUSC is found to be more simi-
lar to head and neck squamous cell carcinoma compared to lung adenocarcinoma indicating
the importance of cell type of origin. In parallel with our observation, these three cancer types
have been previously assigned to a single Pan-Cancer subtype in terms of protein expression
[34]. Another sub cluster is formed from bladder urothelial carcinoma and uterine corpus
endometrial carcinoma, and the high similarity of these two cancer types in terms of protein
expression has been also previously observed [34].

Predicting gene expression in cancer
Having found that many RBPs are differentially expressed in LUSC, we set out to investigate
the regulatory effects of RBPs in this cancer type in more detail. To this end, we developed a
regression model that incorporates copy number variation, DNA methylation and the regula-
tory effects of transcription factors, miRNAs and RBPs as features to predict gene expression in
LUSC (Fig 2):

yg ¼ w0 þ wCCg þ wMMg þ
X

TF

wTFN
TF
g þ

X

miR

wmiRN
miR
g þ

X

RBP

wRBPN
RBP
g

where yg is the expression of gene g, Cg is the CNV of gene g,Mg is the gene’s methylation level
and NTF

g , NmiR
g and NRBP

g are the counts of binding sites of TFs, miRNAs and RBPs for gene g,

respectively. As there are a large number of parameters in this model, we also included a lasso
regularization term to enforce sparsity. In this way, we aimed to find a small set of features that
best explain gene expression. We used the glmnet package [35] to learn the model where we set
the regularization constant using cross-validation (CV).

Performance evaluation
To evaluate the performance of the model, we fit a regression model for each sample separately,
and performed 10-fold CV. For each CV run, we calculated the Spearman rank correlation
between predicted and observed expression of genes in the held-out set. We then averaged
these correlation values across the CV folds, and then across the samples. When we used all the
features described above, we obtained a Spearman rank correlation of 0.36. To determine the
predictive value of features, we compared the full model with partial models that exclude one
of the regulatory classes. Fig 3 shows how average Spearman rank correlation changes when
one type of regulatory class (i.e., CNV, DM, TFs, miRNAs and RBPs) is removed from the
model. This comparison revealed that RBPs show the greatest added predictive value (16%
reduction when omitted) followed by TFs (10% reduction) and methylation (10% reduction).
CNV (4% reduction) and miRNAs (3% reduction) contribute relatively less to the predictive
performance (S4 Table). The strong association of methylation and TFs with gene expression
have been previously observed several times, whereas the remarkably high effect of RBP-medi-
ated regulation in explaining gene expression in cancer is a novel result.
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Candidate regulators of LUSC
Having found that regulatory factors can explain a significant portion of gene expression in
LUSC, we used a feature selection procedure to determine the predominant regulators. A com-
mon approach to test the importance of an additional feature between two nested linear models
is to compare the change in error to a chi-square distribution or F-distribution. However, this
approach becomes invalid when the additional feature is chosen adaptively as in lasso regular-
ized regression [36]. Despite this fact, F-test has been previously used for lasso [16]. Here, we
improve over previous studies by applying a significance test (i.e., covariance test) that
accounts for adaptivity [37]. We applied the covariance test for each sample independently,
and counted the number of times a significant p-value (p-value< 0.05) is obtained for each
feature. Table 1 shows the regulatory factors that are selected in more than 60 samples. In addi-
tion to the name and type of the regulator, the log fold change and the associated FDR-cor-
rected p-value are also displayed if the regulator is found to be differentially expressed
(complete list of candidate regulators is available in S5 Table). Among the candidate regulators,
LIN28A is ranked the first as it was selected as a significant predictor in 40% of all samples.
LIN28A is an evolutionarily conserved RBP that is known to increase proliferation by inhibit-
ing let-7 biogenesis [38]. The next significant predictors are DNA methylation (38% of all sam-
ples) and copy-number variation (37% of all samples). ELAVL1, which ranks fourth in our list
of candidate regulators, has key functions in mRNA stability and translation. In fact, cyto-
plasmic ELAVL1 expression has been previously found to be associated with high tumor grade
and poor survival rate in non-small cell lung carcinoma [39]. Indeed, we found that ELAVL1 is
upregulated in LUSC (LFC = 0.59). We see several other RBPs that are ranked on top of this
list. For instance, SFPQ, which is selected as a significant regulator in a large number of

Fig 2. Overview of the proposed regression model. DNAmethylation, copy number variation and regulatory effects of transcription factors, miRNAs
and RBPs are input to a lasso regularized regression model to predict gene expression in LUSC.

doi:10.1371/journal.pone.0155354.g002
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samples, has been recently found to interact with a long non-coding RNA called MALAT1
(metastasis-associated lung adenocarcinoma transcript 1) [40]. MALAT1 is overexpressed in
several human cancers including non-small cell lung cancer, and has been identified as a criti-
cal regulator of metastasis in lung cancer cells [41, 42]. YY1 (Ying Yang 1) is the top ranking
regulator among the TFs (LFC = 0.83). YY1 is highly expressed in various cancer types, and its
depletion inhibits tumor formation of breast cancer cells [43, 44]. We found that miR-1 is the
top ranking miRNA regulator. A recent study revealed that miR-1 was significantly reduced in
lung squamous cell carcinoma, and its restoration significantly reduced cancer cell progression
[45]. The second ranking miRNA, miR-218, is significantly down regulated in lung squamous
cell carcinoma and has been identified as candidate tumor suppressor [46]. The LFCs that are
calculated with our differential expression analysis are in agreement with these studies (LFCs
-3.47 and -2.09 for miR-1 and miR-218 respectively). Lastly, though located on the lower part
of the list, FXR1 is one of the identified candidate regulators. A previous study has identified
FXR1 as a key regulator of tumor progression and found that its overexpression is critical for
nonsmall cell lung cancer (NSCLC) cell growth [13]. Similarly, we found that FXR1 is

Fig 3. Added predictive value of regulator types. This box plot displays the Spearman rank correlation between the predicted and the actual held-out
genes in 10-fold cross- validation (CV) averaged across all the samples. The full model that uses all features was compared with the partial models that
lack one of the regulator groups: CNV (copy number variation), DM (DNAmethylation), TFs, miRNAs, RBPs.

doi:10.1371/journal.pone.0155354.g003
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significantly upregulated in LUSC (LFC is 1.49). In summary, this table reveals that many of
the candidate regulators are differentially expressed between cancer and normal samples. Alto-
gether, the high correspondence between our predicted candidate regulators and previous liter-
ature indicates that our model is accurate in inferring the key regulators of LUSC.

Target analysis of candidate regulators
The input feature matrix that we compiled by counting the number of binding sites of each reg-
ulator in each gene provides a noisy approximation of functional targets of regulators. To iden-
tify the targets of the regulators from our model robustly, we identified the genes for which the
squared prediction error increases when a regulator is removed. We determined the signifi-
cance of an increase in error by comparing it against a distribution of error changes that are
obtained when the feature matrix is randomized (Materials and Methods). We evaluated our
predicted target gene sets by comparing against experimentally verified interactions, when
available. For RBPs, our validation set consists of the genes that are identified by CLIP

Table 1. Selected candidate regulators.

Regulator Type Selection % logFC p.value

LIN28A RBP 40 - -

Met TF 38 - -

CNV TF 37 - -

ELAVL1 RBP 35 0.59 9.65e-16

YY1 TF 32 0.83 1.06e-29

SFPQ RBP 30 0.77 3.41e-14

PABPN1 RBP 29 0.47 7.2e-09

miR-1 miRNA 28 -3.47 3.15e-37

ZC3H14 RBP 27 -0.14 0.084

miR-218 miRNA 27 -2.09 3.7e-31

miR-142-3 miRNA 26 0.42 0.027

miR-153 miRNA 25 0.26 0.437

let-7e miRNA 25 -0.45 0.05

HNRNPC RBP 25 0.64 7.33e-13

RBM6 RBP 24 -0.45 1.35e-08

G3BP2 RBP 21 0.02 0.856

NRF1 TF 21 0 0.966

RBMS1 RBP 20 -0.33 0.09

miR-494 miRNA 20 0.32 0.428

REST TF 19 0.39 0.06

CPEB4 RBP 19 -1.3 7.68e-25

miR-1224 miRNA 19 0.47 0.283

CDX1 TF 19 - -

miR-143 miRNA 18 -1.62 1.07e-19

ETV6 TF 18 0.52 1.23e-05

miR-375 miRNA 18 -2.69 1.5e-14

PABPC4 RBP 18 0.56 2.13e-08

RBM4 RBP 18 0.48 8.12e-11

miR-421 miRNA 17 0.67 0.01

GLIS1 TF 17 0 0

SART3 RBP 17 0.58 9.27e-15

doi:10.1371/journal.pone.0155354.t001
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experiment. As such, we could evaluate the target sets of RBPs with CLIP data: LIN28A,
ELAVL1, HNRNPC, PUM2 and IGF2BP2. We evaluated the target predictions for our top
ranking miRNAs miR-1 and miR-218, by compiling experimentally verified targets (either
with strong evidence or weak evidence) fromMirTarBase database. Fig 4 shows the number of
genes that are shared between the set of our predicted targets and the set of experimentally veri-
fied targets, for RBPs and miRNAs. We see a high overlap between the two sets for RBPs. In
particular, almost 50% of the predicted target genes for ELAVL1 are also CLIP targets. The
intersection is much smaller for miRNAs. A similar result has been previously obtained when
miRNA target prediction methods were compared based on the number of validated targets in
miRTarBase [16].

Next, we utilized a previously published ELAVL1 knockdown dataset that includes genome-
wide measurements of transcripts upon ELAVL1 depletion in HEK293 cells [47]. ELAVL1 is
known to increase the stability of its targets, so we expect ELAVL1 targets to have decreased
expression upon its depletion. In Fig 5A we plot the cumulative distribution of LFCs of the

Fig 4. Intersection of predicted target genes with experimentally verified targets. A. Predicted target gene sets of RBPs are intersected with targets
determined with CLIP method. B. Predicted targets of miRNAs are intersected with experimentally verified (with either weak or strong evidence) miRNA
targets downloaded frommiRTarBase.

doi:10.1371/journal.pone.0155354.g004

Roles of RBPs in Lung Squamous Cell Carcinoma

PLOSONE | DOI:10.1371/journal.pone.0155354 May 17, 2016 10 / 16



following groups of genes: (i) CLIP-derived target genes, (ii) target genes predicted based on
our model (predicted targets), (iii) genes that have at least one ELAVL1 motif but that do not
appear in groups (i) and (ii) (motif-derived targets), (iv) genes with no ELAVL1 motif (no site).
This analysis revealed that our predicted targets have lower LFCs than motif-derived targets
and genes with no ELAVL1 site indicating that our predicted target genes are likely to be func-
tional targets. Furthermore, we made a similar comparison between these groups based on
expression changes of genes across matched tumor-normal samples. Namely, we plot the
cumulative distribution of LFCs calculated with edgeR (Fig 5B). We observe that the distribu-
tions of LFCs of our predicted target genes and CLIP-derived target genes are close. Since
ELAVL1 is upregulated in LUSC (LFC = 0.59), we expect its targets to be upregulated as well.
In line with this, our predicted target genes have larger LFCs than the groups (iii) and (iv).
Altogether these results support the accuracy of our model in identifying the functional targets
of ELAVL1.

Discussion
In this study, we investigated the mechanisms that account for gene expression regulation in
LUSC. We initially assessed the alterations in expression of genes that encode for RBPs across a
number of cancer types. To our knowledge, this is the first time differentially expressed RBPs
are searched using a method that accounts for matched samples across several cancer types (i.e.
edgeR). The results of this analysis revealed that several RBPs are differentially expressed with
district profiles of up- or down-regulation across the cancers. Having found that the number of
differentially expressed RBPs is largest in LUSC, we developed a lasso-regularized regression
model to predict gene expression in LUSC by incorporating several features including the regu-
lation mediated by RBPs. We were able to accurately predict the expression of genes in

Fig 5. Evaluation of predicted target genes of ELAVL1. A. Cumulative distribution of LFCs of genes upon ELAVL1 depletion in HEK293 cells. B.
Cumulative distribution of LFCs that correspond to gene expression changes in tumor samples compared to normal samples.

doi:10.1371/journal.pone.0155354.g005
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held-out sets by incorporating a comprehensive set of regulatory elements that are bound by
TFs, miRNAs and RBPs, as well as genetic and epigenetic alterations as features in our statisti-
cal model. Importantly, compared to other regulatory classes, exclusion of RBPs results in the
largest decrease in predictive performance revealing the influence of RBP-mediated regulation.
This is one of the key novel observations of the current study that indicates the importance of
RBPs in regulation gene expression in LUSC.

Next, we identified key regulators of LUSC by calculating the significance of each feature
using a recently proposed statistical test that accounts for the adaptive nature of fitting lasso
models. Inference of statistically significant features in adaptive models is an active research
area in statistics, and we believe that our study will be instrumental in dissemination of this
recent result to bioinformatics community. We found that the majority of the top ranking can-
didate regulators are differentially expressed in LUSC, and have been previously identified to
be associated with lung cancer. We have also identified additional regulators such as LIN28A
and CPEBP4 that were not previously studied in the context of lung cancer. Also, the fact that
many of the candidate regulators are RBPs agrees with our previous result on the added predic-
tive value of RBPs.

As a follow-up analysis, we utilized our fitted model parameters to identify target genes of
candidate regulators. We evaluated our predicted target gene sets by comparing against experi-
mentally identified targets. We found that nearly* 50% of our predicted ELAVL1 targets
overlap with CLIP-derived target genes. This overlap was relatively smaller for the other regu-
lators. A reason for this observation could be the fact that these experiments were performed in
other cell types than lung cancer cells. Furthermore, CLIP protocol and the experimental tech-
niques that miRTarBase database considers only aim to identify whether the regulator of inter-
est physically binds to an mRNA. As such, not all the target genes identified by these
techniques may correspond to functional targets. Our further analysis of ELAVL1 targets by
utilizing a genome-wide ELAVL1 knockdown dataset allows us to investigate the functional
relationship between ELAVL1 and our predicted targets.

Apart from the results on RBP regulation, our study is also amongst the first to incorporate
the recently released JASPAR and TargetScan databases in predicting TF and miRNA binding
sites, respectively. Identification of TF and miRNA target sites can become more accurate with
the availability of ChiP-Seq and CLIP-seq datasets in lung cells. Similarly, CLIP experiments
have been performed for a small number of RBPs, and increase in the number of such experi-
ments would improve the definition of RBP target sets. Another possible improvement would
be the consideration of alternative polyadenylation (APA) in defining RBP and miRNA sites.
Recently developed computational models such as DaPars [48] and GETUTR [49] can perform
de novo identification of APA events from standard RNA-seq data. These methods can be used
to determine the 3’UTR isoform distribution for each sample (i.e., tumor) separately. Subse-
quently, RBP and miRNA sites can be defined for each sample uniquely based on this distribu-
tion. Furthermore, RNA secondary structure, which is an important factor for target
recognition of some RBPs, has been ignored in the current study. RNA secondary structure can
be considered in the identification of RBP binding sites as more RBPs have characterized sec-
ondary structure preferences. Also, recent advances in experimental techniques to query sec-
ondary structure in vivo [50, 51] promise to generate a more accurate set of mRNA secondary
structures compared to the computational prediction methods.

In our model, we made a simplifying assumption that TFs, RBPs and miRNAs can bind to
mRNA independently. However, multiple TFs can bind to the same promoter in a competitive
or collaborative fashion. Similarly, recent studies show that RBPs and miRNAs can act in com-
petition or collaboration with each other [52]. Increased knowledge on these interactions will
be instrumental in developing more accurate models of regulatory networks in the future.
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Lung cancer is one of the most difficult cancers to treat. Recently developed molecular ther-
apies can be targeted to adenocarcinoma of the lung [53]. Such a treatment has not been pro-
posed for squamous cell carcinoma yet. Therefore, identification of novel therapeutic agents is
vital for this cancer type. Here, we applied our novel statistical model to infer gene regulatory
mechanisms in LUSC, and identified a number of candidate regulators including RBPs. Further
studies of these candidate regulators will provide insights into the molecular mechanisms of
cancer development in LUSC.
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