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Quaking promotes monocyte differentiation
into pro-atherogenic macrophages by controlling
pre-mRNA splicing and gene expression
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Janine M. van Gils1,2, Jacques M.G.J. Duijs1,2, Sol Katzman3, Adriaan O. Kraaijeveld5, Stefan Böhringer6,

Wai Y. Leung7, Szymon M. Kielbasa6, John P. Donahue3, Patrick H.J. van der Zande1,2, Rick Sijbom1,2,

Carla M.A. van Alem2, Ilze Bot8, Cees van Kooten2, J. Wouter Jukema5,9, Hilde Van Esch10, Ton J. Rabelink1,2,

Hilal Kazan11, Erik A.L. Biessen4,8, Manuel Ares Jr.3, Anton Jan van Zonneveld1,2 & Eric P. van der Veer1,2

A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to

sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli

are known to induce transcriptional changes associated with macrophage phenotype, but

posttranscriptional control of human macrophage differentiation is less well understood. Here

we show that expression levels of the RNA-binding protein Quaking (QKI) are low in

monocytes and early human atherosclerotic lesions, but are abundant in macrophages of

advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration,

differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and

microarray analysis of human monocyte and macrophage transcriptomes, including those of a

unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger

RNA levels and splicing of RNA transcripts. The biological importance of these transcripts

and requirement for QKI during differentiation illustrates a central role for QKI in

posttranscriptionally guiding macrophage identity and function.
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M
onocytes serve as danger sensors within the circulation.
The activation of blood-borne monocytes by
inflammatory stimuli triggers their adhesion and

homing to sites of tissue injury, where they differentiate into
macrophages and collectively aid in the resolution of damage1,2.
However, the chronic accumulation of macrophages at these sites
of injury is a hallmark of inflammatory diseases such as
rheumatoid arthritis3, Crohn’s disease4 and atherosclerosis5–7.

Dynamic changes in gene expression are associated with
monocyte to macrophage differentiation, where PU.1 (ref. 8),
Signal Transducer and Activator of Transcription (STATs)9 and
CCAAT/Enhancer Binding Protein (C/EBP)s10 are key
transcription factors that drive this alteration in cellular
phenotype and function11,12. Importantly, numerous studies
have identified critical roles for both microRNAs (miRNAs)
and RNA-binding proteins (RBPs) in posttranscriptionally
regulating monocyte13 and macrophage14 biology. However, the
posttranscriptional regulation of monocyte to macrophage
differentiation has generally been limited to studies detailing
miRNA-based targeting of individual transcription factors or
effector molecules that either stimulate or delay this phenotypic
conversion15–17.

In contrast to miRNAs, RBPs mediate both quantitative and
qualitative changes to the transcriptome, interacting with
pre-mRNAs to influence (alternative) splicing, transcript stability,
editing, subcellular localization and translational activation or
repression18–20. This broad arsenal of RNA-based control
points enables RBPs to modulate the proteome in response to
immunogenic stimuli17, shifting inflammatory cells from an
immature or naive state to a mature or activated state, as has
previously been established in lymphoid cells21,22. In recent times,
we discovered that expression of the RBP Quaking (QKI) is
induced in human restenotic lesion-resident vascular smooth
muscle cells (VSMCs), where it directly mediates a splicing event
in the Myocardin pre-mRNA that governs VSMC function23.
This finding prompted us to investigate whether QKI could
similarly serve as an inflammation-sensitive posttranscriptional
guide during monocyte to macrophage differentiation. Alter-
native splicing of the QKI pre-mRNA yields mature transcripts of
5, 6 or 7 kb that encode distinct protein isoforms, namely QKI-5,
-6 and -7 (refs 24,25). QKI-5 possesses a nuclear locali-
zation signal in the carboxy-terminal region and is found
in the nucleus of cells. In contrast, QKI-6 and QKI-7 are found
in the cytoplasm. However, QKI-6 and QKI-7 can also translocate
to the nucleus23,26. The presence of a KH-family homology
domain confers QKI with the capacity to bind RNA27, albeit
dimerization is required26,28 to bind with high affinity to the QKI
response element (QRE) sequence (NACUAAY N1-20 UAAY)
on target RNAs29–33. Importantly, aberrant QKI expression is
associated with inflammatory diseases such as schizophrenia34,35,
cancer36 and restenosis23.

Here we show that the RBP QKI plays a critical role in
regulating the conversion of monocytes into macrophages in,
for example, atherosclerotic lesions. Our studies pinpoint QKI as
a dynamic regulator of pre-mRNA splicing and expression
profiles that drive monocyte activation, adhesion and
differentiation into macrophages, and facilitates their conversion
into foam cells.

Results
Human atherosclerotic lesion macrophages express QKI. We
previously observed QKI expression in VSMCs23 and in leukocyte
foci within human coronary restenotic lesions. Based on this
observation, we used laser-capture microdissection to harvest
CD68þ macrophages from early and advanced atherosclerotic

lesions of human carotid arteries. QKI mRNA was 4.2-fold
enriched in macrophages derived from advanced as compared
with early atherosclerotic lesions (Fig. 1a). Next, using
immunohistochemistry, we assessed QKI protein expression in
human tissue sections at various stages of atherosclerotic lesion
development, namely early pathological intimal thickening (PIT),
fibrous cap atheroma (FCA) and intraplaque haemorrhaging
(IPH). Although QKI was detectable in CD68þ myeloid cells
of PIT, it was abundantly expressed in macrophage-rich FCA
and IPH lesions (Fig. 1b). Furthermore, QKI-5, -6 and -7 were
detectable in the nuclear, perinuclear and cytoplasmic regions of
intimal macrophages in both FCA and IPH, respectively (Fig. 1c).
We conclude that the accumulation of macrophages in human
atherosclerotic lesions is associated with increased mRNA
and protein expression of all three QKI isoforms within the
macrophage.

A reduction in QKI decreases lesional macrophage burden. To
investigate whether decreased QKI expression in monocytes and
macrophages could influence atherosclerotic lesion formation, we
transplanted bone marrow (BM) from QKI viable (qkv) mice37,
which express reduced levels of QKI protein, or their wild-type
(wt) littermate controls (LM) into atherogenic LDLR� /� mice.
Although qk knockout mice die as embryos, the qkv mouse
harbours a spontaneous B1 Mb deletion in the QK promoter
region that leads to reduced levels of QKI mRNA and protein37.
Indeed, macrophage colony-stimulating factor (M-CSF)-
mediated conversion of LM and qkv BM-derived monocytes to
macrophages showed subtly reduced QKI-5 mRNA and protein
levels, and almost a complete ablation of QKI-6 and -7 protein
(Fig. 1d,e). Following BM transplantation, the LDLR� /� /qkv and
LDLR� /� /LM mice were fed a high-fat diet for 8 weeks, to
induce atherosclerotic lesion formation. Interestingly, the long-
term reduction of QKI expression during haematopoietic
reconstitution limited neutrophil and monocytic repopulation
(Supplementary Data 1). In keeping with this finding,
immunohistochemical analysis of the aortic root revealed
significantly decreased monocyte/macrophage content within
atherosclerotic lesions of LDLR� /� /qkv mice (Fig. 1f), a
finding that immunohistochemical analysis revealed was
independent of plaque size or collagen content. These findings
suggested that changes in haematopoietic and monocytic QKI
expression could influence the macrophage content of
atherosclerotic lesions.

QKI is induced on monocyte to macrophage differentiation.
Having identified high QKI expression in macrophages in
atherosclerotic lesions, we first explored whether QKI mRNA
expression levels differ in macrophage precursors, namely classical
(CD14þþ /CD16� ), intermediate (CD14þþ /CD16þ ) and
non-classical (CD14þ /CD16þ ) monocytes derived from human
peripheral blood (PB)2. All three monocyte subpopulations
abundantly expressed QKI-5, -6 and -7 mRNAs as compared
with glyceraldehyde 3-phosphate dehydrogenase (Fig. 2a).
Moreover, QKI-5, -6 and -7 mRNA levels increased as classical
monocytes progressed towards intermediate or non-classical
monocytes. Interestingly, QKI-5 mRNA was the most abundantly
expressed transcript in all three subpopulations. (Fig. 2a).

Next, we assessed QKI mRNA and protein levels in human PB
monocytes treated with granulocyte–macrophage CSF (GM-CSF)
and M-CSF, to stimulate their conversion to pro-inflammatory
and anti-inflammatory macrophages, respectively (Fig. 2b). We
observed remarkable increases in the expression of all QKI
mRNA transcripts in mature macrophages (Fig. 2c). However,
despite abundant QKI mRNA, the distinct QKI isoforms
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Figure 1 | Quaking is expressed in macrophages within atherosclerotic lesions. (a) Pan-QKI mRNA expression levels in CD68þ macrophages of early

and advanced atherosclerotic lesions isolated by laser-capture microdissection (n¼4). Data expressed as mean±s.e.m.; Student’s t-test, *Po0.05. Scale

bar, 50mm. (b) Immunohistochemical analysis of co-localization of pan-QKI and CD68 expression in preliminary intimal thickening (PIT), FCA and

intraplaque haemorrage (PIH). Dashed line denotes intimal/adventitial border. Scale bar, 50mm. (c) Immunohistochemical analysis of QKI-5, -6 and -7

expression in PIT, FCA and IPH (top), and quantification of QKI-positive cells mm2 per tissue sample (n¼ 5). Data expressed as mean±s.e.m.; one-way

analysis of variance (ANOVA), Bonferroni’s post-hoc test; *Po0.05, **Po0.01. (d) Quantitative RT–PCR (qRT–PCR) analysis of QKI mRNA expression in

naive BM-derived CD115þ mouse monocytes and 7 days M-CSF stimulated macrophages of either wt-littermates (LM) or quaking viable (qkv) mice

(n¼ at least 3 mice per condition). Data expressed as mean±s.e.m.; one-way ANOVA, Bonferroni’s post-hoc test; *Po0.05 and **Po0.01. (e) Western

blot analysis of QKI-5, -6 and -7 expression levels in 7 days M-CSF stimulated macrophages derived from BM of wt and qkv mice. Each lane represents an

individual mouse lysate (biological n¼ 3). (f) Immunohistochemical analysis for atherosclerotic plaque-resident macrophages (% MoMa-positive area) in

aortic root sections of g-irradiated (8 Gy) LDLR� /� mice that subsequently were transplanted with BM from either qkv mice (qkv-BM) or littermates

(LM)(LM-BM) and fed a high-fat diet for 8 weeks to develop atherosclerotic lesions (n¼ 12 per group). Scale bar, 200mm. Data expressed as

mean±s.e.m.; Student’s t-test, with *Po0.05.
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were poorly expressed in freshly isolated PB monocytes as
compared with mature macrophages (Fig. 2d). The GM-CSF or
M-CSF-induced conversion of monocytes into macrophages was
associated with striking increases in QKI-5, -6 and -7 protein
levels, with a more pronounced increase in all three isoforms
observed with M-CSF treatment (Fig. 2d).

QKI haploinsufficiency perturbs macrophage differentiation.
To further assess the role of QKI in monocyte and macrophage
biology, we undertook an in-depth analysis of a unique, QKI
haploinsufficient individual (Pat-QKIþ /� ) and her sister control
(Sib-QKIþ /þ )38. This patient is the only known carrier of a
balanced reciprocal translocation (t(5;6)(q23.1;q26)), where a
breakpoint in one of her QKI alleles specifically reduces QKI
expression by 50% in both QKI mRNA38 and QKI protein
levels as compared with her sibling (Sib-QKIþ /þ ; Fig. 3a,b).
RNA sequencing (RNA-seq) analysis (see below) confirmed
altered QKI expression and furthermore revealed the precise
location of the translocation breakpoint in intron 4 of QKI
(Fig. 3b and Supplementary Fig. 1a).

We next compared the circulating monocytes of these two
individuals for the expression of well-established monocyte
cell surface markers such as CD14, CD16, CX3CR1, CCR2,
SELPLG and CSF1R by fluorescence-activated cell sorting (FACS)
analysis. Although monocyte subset ratios were not different
(Supplementary Fig. 2a), the expression of CSF1R, the
receptor that drives macrophage commitment, was elevated
in Pat-QKIþ /� non-classical monocytes as compared with
Sib-QKIþ /þ (Supplementary Fig. 2b). As CSF1R is normally
reduced when monocytes differentiate into macrophages, this
observation points towards a potential defect in monocyte
maturation in the patient.

Next, we investigated the consequences of decreased QKI
expression on monocyte to macrophage differentiation. For this,
we obtained freshly isolated Pat-QKIþ /� and Sib-QKIþ /þ

monocytes from venous blood and treated the cells for 7 days
in the presence of either GM-CSF or M-CSF. Similar to the results
in Fig. 2b, Sib-QKIþ /þ monocytes possessed the capacity to
adopt the characteristic pro-inflammatory macrophage
morphology, whereas monocytes from Pat-QKIþ /� generally
retained a monocytic morphology (Fig. 3c top panels). We
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selection and FACS sorting for blood-derived human monocyte subsets, namely classical (CD14þ þ , CD16� ), intermediate (CD14þ þ ,CD16þ ) and

non-classical (CD14þ ,CD16þ ). Expression is depicted relative to copies per glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Data expressed as

mean±s.e.m.; one-way analysis of variance (ANOVA), Bonferroni’s post-hoc test; *Po0.05 and **Po0.01. (b) Phase-contrast photomicrographs of human

PB monocytes cultured for 7 days in the presence of either GM-CSF or M-CSF. Scale bar, 50mm. (c) Quantitative RT–PCR (qRT–PCR) analysis for QKI

mRNA isoforms in naive PB monocytes isolated using CD14þ microbeads, 7 days GM-CSF and 7 days M-CSF differentiated macrophages (n¼ 3).

Expression is depicted relative to copies per GAPDH. Data expressed as mean±s.e.m.; one-way ANOVA, Bonferroni’s post-hoc test; *Po0.05 and

**Po0.01. (d) Western blot analysis of QKI protein isoforms in naive monocytes, 7 days GM-CSF and 7 days M-CSF differentiated macrophages (pan-QKI

and CD14: n¼ 5, QKI-5, 6 and 7: n¼ 1) with quantification of pan-QKI (n¼ 5). Data expressed as mean±s.e.m.; Student’s t-test, with **Po0.01. Equivalent

concentrations of whole-cell lysates were loaded per lane as determined using a BCA protein assay.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10846

4 NATURE COMMUNICATIONS | 7:10846 | DOI: 10.1038/ncomms10846 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


harvested RNA and protein from these macrophages and
found that both QKI mRNA and protein levels were
decreased (Fig. 3d,e). Surprisingly, this reduction in QKI did
not appear to have an impact on the conversion of monocytes

into anti-inflammatory macrophages (Fig. 3c bottom panels), a
finding that prompted us to focus on the role of QKI in
monocyte to macrophage differentiation in a pro-inflammatory
setting.
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QKI impacts transcript abundance in monocytes and macro-
phages. The observed increase in QKI expression during
macrophage differentiation and well-established function as a
splicing and translational regulator23,31,39,40 suggested that QKI is
necessary for posttranscriptional control of events that lead to
macrophage identity. To identify potential regulatory targets of
QKI at a genome-wide level, we characterized the trans-
criptomes of Sib-QKIþ /þ and Pat-QKIþ /� monocytes and
GM-CSF-stimulated macrophages by RNA-seq (Supplementary
Data 2). First, we assessed the expression levels of established
immune-regulated genes11,12. As shown in Fig. 3f, the mRNA
levels of many monocyte to macrophage differentiation
markers11,12 were similarly regulated in Sib-QKIþ /þ and
Pat-QKIþ /� (CD68m, ApoEm, ITGAMm, CD14k, CX3CR1k
and CD163k). In contrast, the expression levels of several key
pro- and anti-inflammatory markers indicated an anti-
atherogenic shift in Pat-QKIþ /� macrophages (Fig. 3f right;
IL6k, IL23ak, CD16Ak, CD16Bk, ApoEk and IL10m). At the
genome-wide level, QKI haploinsufficiency altered the abundance
of 2,433 and 1,306 mRNA species in monocytes and macrophages
(Fig. 3g, Supplementary Data 2 and Supplementary Fig. 3 top),
respectively. Subsequently, we computationally determined the
subset of mature mRNA transcripts in the genome that contain a
QKI-binding sequence motif (termed QRE)30 (Supplementary
Data 2). Our data suggested that QKI directly modulates the
expression of 215 (128m and 87k) and 154 (100m and 54k)
mRNAs in PB monocytes and macrophages, respectively (Fig. 3g,
Venn sum of intersect). The five most differentially expressed
genes in the patient relative to the sibling that harbour a QRE are
shown in Fig. 3h. By selecting genes containing QREs, we
identified a substantial number of putative QKI-mediated
changes in transcript abundance (Fig. 3i).

Previous genome-wide studies have reported contrasting roles
for QKI as both a repressor and stabilizer of target mRNAs31,33.
Intrigued by this ambiguity, we determined the consequences of
QKI haploinsufficiency on mRNA transcript abundance in
monocytes and macrophages. For this, we tested whether the
presence of a QRE within a target mRNA was associated with
increased or decreased mRNA abundance in the patient relative
to her sibling (Supplementary Fig. 3 top). For this, we plotted the
cumulative distribution fraction (CDF: y axis, as a fraction of total
genes) against the transcript Log2FC (x axis: Pat-QKIþ /� /
Sib-QKIþ /þ ) and stratified for either putative QKI targets (with
QRE) or non-targets (no QRE). In PB monocytes, a reduction in
QKI was associated with significantly lowered target mRNA
expression (Fig. 3j left panel, left shift of cyan line). In contrast, in

PB macrophages the expression levels of mature mRNAs
containing QREs was strikingly increased in the patient relative
to her sibling, as compared with those without QREs (Fig. 3j right
panel, right shift of cyan line). Collectively, these studies
suggested that QKI potently regulates gene expression during
monocyte-to-macrophage differentiation.

QKI controls splicing in monocytes and macrophages.
Given previous reports that QKI is involved in splicing of
pre-mRNAs23,39–42, we tested whether QKI acts similarly in
monocytes and macrophages. First, we evaluated our RNA-seq
analysis of Sib-QKIþ /þ and Pat-QKIþ /� PB monocytes and
macrophages for splicing changes (Supplementary Data 3). This
analysis uncovered 1,513 alternative splicing events between
Pat-QKIþ /� and Sib-QKIþ /þ monocytes and macrophages,
revealing events that were unique to either monocytes or
macrophages, as well as common events (Supplementary Data
3). Previous observations for QKI and other RBPs suggested that
when a splicing factor binds the intron downstream of an
alternative exon, it promotes exon inclusion; however, when
binding the intron upstream of the alternative exon, the RBP
promotes exon skipping19,43. We analysed the RNA-seq data for
such a trend using the set of splicing events that change between
the Pat-QKIþ /� and Sib-QKIþ /þ , to determine the frequency
of the QKI-binding motif, ACUAA, around these regulated
exons, relative to a background set of exons that is expressed, but
inclusion is unchanged between the two data sets. The results of
these analyses are shown in Fig. 4a and Supplementary Data 4,
and demonstrate ACUAA motif enrichment upstream of exons
with increasing inclusion in Pat-QKIþ /� (QKI repressed exons)
relative to background exons, as well as an increase in ACUAA
motif frequency downstream of exons with increased skipping
(QKI activated) relative to background. This suggested that
similar to C2C12 myoblasts39, QKI promotes exon skipping by
binding the upstream intron, while promoting inclusion of
alternative exons by binding to the downstream intron, in
monocytes and in macrophages. These data strongly support a
direct, position-dependent role for QKI in regulating alternative
splicing, while also providing additional protein diversity during
monocyte-to-macrophage differentiation.

As shown in Fig. 4b, QKI haploinsufficiency triggered
alternative splicing events in PB monocytes (orange tracks) and
macrophages (blue tracks). Interestingly, the presence of
QKI-binding sites, as defined by either experimentally deter-
mined QKI PAR-CLIP sites39 and/or ACUAA motifs clearly

Figure 3 | Characterization of monocyte and macrophage biology in a unique QKI haploinsufficient patient. (a) Schematic of chromosomal translocation

event in the qkI haploinsufficient patient (Pat-QKIþ /� ), reducing QKI expression to B50% that of her sister control (Sib-QKIþ /þ ). (b) Top: UCSC

Genome Browser display of reference genome QKI locus with standard and chimeric reads for the patient and sibling. The reduced expression levels

and altered 30-untranslated region (UTR) composition in the patient RNA as compared with a sibling control is noteworthy. Patient shows increased

intronic RNA extending to the point where chimeric reads map at the breakpoint to chr5. Middle: chromosome diagrams showing normal chromosomes 5

and 6 with the red line, indicating the location of the breakage fusion point. Bottom: sequence across the fusion point. The chromosomal origin of

the AG dinucleotide is ambiguous. (c) Photomicrographs of sibling and patient macrophages, cultured in GM-CSF or M-CSF for 7 days, respectively.

(d,e) Assessment of QKI isoform mRNA and protein expression in 4-day GM-CSF-stimulated macrophages in the sibling and patient. (f) Hierarchical

clustering (Euclidean algorithm) of key monocyte differentiation genes depicting changes in RNA-seq-derived mRNA abundance where dark

blue¼ low expression, whereas light blue¼ high expression (* and/or # indicates Z1.5-fold expression change in monocytes or macrophages,

respectively). (g) Venn diagrams with numbers of differentially expressed genes (minimally ±1.5-fold; patient/sibling expression) for unstimulated (top)

and GM-CSF stimulated macrophages (bottom). An expression cutoff (Patþ Sib expressionZ1CPM) was applied. (h) The most differentially expressed

genes, harbouring a QRE are depicted. (i) Genome-wide scatterplot of mRNA abundance (y axis: Log10 CPM) versus the log2FC (x axis: Patient/sibling

CPM) after an expression cutoff (Patþ Sib expression Z1 CPM) in monocytes (left) and GM-CSF-stimulated macrophages (right). Blue dots indicate

QRE-containing transcripts minimally ±1.5-fold differentially expressed. Grey dots do not fulfill these criteria. (j) CDF (y axis) for QKI target

(QRE containing: blue line) and non-target (non-QRE containing: cyan line) mRNAs (x axis: log2FC) in monocytes (left) and macrophages (right). Left shift

indicates lower expression of QKI target genes, whereas a right shift indicates higher expression of QKI targets in the patient samples. Distributions were

compared using a Wilcoxon rank-sum test.
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Figure 4 | QKI influences pre-mRNA splicing in naive PB monocytes and macrophages. (a) SpliceTrap assessment of the proximal ACUAA RNA motif

enrichment in 50-bp windows upstream and downstream of alternatively spliced cassette exons (as compared with a background set of exons; grey

circles). The relationship between the frequency of exon exclusion (blue triangles) or exon inclusion (red squares) and ACUAA RNA motif enrichment over

the genomic locus are depicted. (b) Sashimi plots illustrate RNA-seq read coverage for selected alternative splicing events in Pat-QKIþ /� versus Sib-

QKIþ /þ PB monocytes (orange) and macrophages (blue). Splicing events (se) are highlighted by inverted brackets. The location of ACUAA motifs and

QKI PAR-CLIPs are provided below. Splicing events were defined based on the genomic organization of RefSeq transcripts (bottom tracks). Full event details

are provided in Supplementary Data 3. (c) PCR validation of alternatively spliced cassette exons in Sib-QKIþ /þ and Pat-QKIþ /� PB-derived monocytes

and macrophages. Primers were designed to target constitutive flanking exons. PCR product size for exon inclusion (top) and exclusion (bottom) variants

are provided (left). (d) Phase-contrast and fluorescence-microscopy photographs (scale bar, 50mm) of primary human, PB macrophages of healthy

controls that have been treated with FAM-labelled GapmeRs, to reduce QKI expression. (e) Quantitative RT–PCR (qRT–PCR) of QKI mRNA isoform

expression in GapmeR-treated macrophages (n¼ 3). Data expressed as mean±s.e.m.; Student’s t-test, with **Po0.01. (f) PCR validation of alternatively

spliced cassette exons in GapmeR-treated PB-derived macrophages. Primers were designed to target constitutive flanking exons. PCR product size for exon

inclusion (top) and exclusion (bottom) variants are provided (left). A representative illustration is shown of an n¼ 3 donors. Data expressed as

mean±s.e.m.; Student’s t-test, with **Po0.01 and #P¼0.08.
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associated with changes in exon inclusion (for example, ADD3),
alternative 50-splice sites (PARP2), alternative 30-splice sites
(M6PR) and intron retention (for example, BICD2), thereby
expanding the detection of veritable QKI-regulated events beyond
cassette exons (splice event ‘se’ location defined by brackets).
Importantly, strong correlations were observed between QKI
expression levels and the magnitude of the splicing event, be it
between the patient and sibling control, or between monocytes
and macrophages (Fig. 4b).

Finally, we validated several alternatively spliced cassette exons,
including events in ADD3, LAIR1 and UTRN by reverse
transcriptase–PCR (RT–PCR), using primers in flanking exons
(Fig. 4c). Collectively, our RNA-seq data analysis of this unique
QKI haploinsufficient individual strongly suggested a direct role
for QKI in regulating alternative splicing events that could
influence monocyte to macrophage differentiation.

To extend results obtained with the QKI haploinsufficient
patient, we abrogated QKI expression in naive primary human
monocytes harvested from freshly drawn venous blood of healthy
controls. We designed GapmeR antisense oligonucleotides that
either targeted QKI for degradation (QKI-Gap), or are scrambled
as a control (Scr-Gap), coupled with a 50-FAM label to track
their cellular uptake. The QKI-Gap and Scr-Gap compounds
were administered to the freshly isolated monocytes, concomitant
with GM-CSF for 96 h, to drive the differentiation to
pro-inflammatory macrophages. In contrast to our attempts
to reduce QKI mRNA levels using other well-established
approaches, we observed virtually no signs of cytotoxicity or
apoptosis following GapmeR treatment. Furthermore, the
treatment did not hamper the capacity of monocytes to
differentiate into macrophages (Fig. 4d top), while uptake
efficiency approached 100% (based on FAMþ cells; Fig. 4d
bottom). After 96 h, we harvested RNA from the QKI-Gap- and
Scr-Gap-treated macrophages, which yielded a minimal reduction
in QKI-5 mRNA levels but remarkable reductions in QKI-6 and
QKI-7 mRNAs (Fig. 4e). Albeit that the GapmeR-mediated
reduction in QKI expression in primary human macrophages was
not as striking as that observed in the QKI haploinsufficient
patient, it nonetheless enabled us to visualize and validate signi-
ficant changes in several of the aforementioned QKI-mediated
alternative splicing events, such as ADD3 and FcgR-IIb (FCGR2B)
(Fig. 4f; n¼ 3 donors). It should be noted that the inability to
remarkably reduce the expression of the nuclear QKI isoform,
namely QKI-5, could be responsible for the discrepancy between
the striking shift in splicing observed in the QKI haploinsufficinet
patient as compared with the GapmeR-mediated abrogation
of QKI expression. Taken together, these studies clearly
pinpoint QKI as a regulator of pre-mRNA splicing during

monocyte-to-macrophage differentiation and implicate QKI gene
dosage as a determinant of splicing event magnitude.

QKI regulates transcript abundance in THP-1 cells. To provide
further support for a regulatory role for QKI during monocyte-to-
macrophage differentiation, we tested whether QKI could
similarly modulate transcript abundance and pre-mRNA splicing
in a well-established monocyte cell line, namely THP-1 cells.
Similar to GM-CSF-induced differentiation of PB monocytes into
macrophages, the 12,13-phorbol myristyl acetate (PMA)-induced
transition of THP-1 ‘monocytes’ to ‘macrophages’ was associated
with the following: (1) significantly increased expression of all
QKI mRNA transcripts (Fig. 5a); (2) barely detectable levels of
QKI protein in THP-1 ‘monocytes’ (Fig. 5b and Supplementary
Fig. 4a); and (3) significantly increased expression of QKI protein
during THP-1 ‘monocyte’ to ‘macrophage’ differentiation
(Fig. 5b,c). Next, we stably transduced THP-1 ‘monocytes’ with
either short-hairpin RNA (shRNA) targeting QKI (sh-QKI)
to specifically deplete QKI or with a non-targeting shRNA
control (sh-Cont) (Supplementary Fig. 4b). Similar to GM-CSF-
stimulated Pat-QKIþ /� versus Sib-QKIþ /þ monocytes,
sh-QKI THP-1 ‘monocytes’ displayed an inability to adopt the
‘macrophage’ morphology following stimulation with PMA as
compared with sh-Cont THP-1 ‘monocytes’ (Supplementary
Fig. 4c arrows). We subsequently determined mRNA levels using
an exon junction microarray44 analysing RNA isolated from
unstimulated and 3 days PMA-stimulated THP-1 sh-Cont and
sh-QKI ’monocytes’ and ‘macrophages’ (Supplementary
Data 5). Next, as shown in Fig. 5d, we assessed the expression
profile of established monocyte differentiation genes (for
example, CD14m, CXCL8m, CSF1Rm, ApoEm, CX3CR1k,
CCR2k and CCL22k). Similar to QKI haploinsufficient
macrophages, several markers in sh-QKI THP-1 ‘macrophages’
displayed an anti-atherogenic phenotypic shift (IL6k, IL23ak,
CD16Ak, CD16Bk, ApoEk and IL10m) as compared with
sh-Cont THP-1 ‘macrophages’ (Fig. 5d).

At the genome-wide level, the reduction of QKI significantly
altered the abundance of 359 and 573 mRNAs in THP-1
‘monocytes’ and ‘macrophages’, respectively (Fig. 5e, Supple-
mentary Data 5 and Supplementary Fig. 3 bottom). Of these
differentially expressed mRNAs, 56 and 128 were computationally
predicted QKI targets based on the presence of a QRE in the
mature mRNA (Fig. 5e intersect). The most differentially expressed
transcripts harbouring a QRE are denoted in Fig. 5f. The
expression levels of mRNAs targeted by QKI in THP-1 ‘mono-
cytes’ and ‘macrophages’ are depicted in Fig. 5g (blue dots) and
Fig. 5h (blue lines), relative to those not directly affected by

Figure 5 | QKI influences mRNA transcript abundance during differentiation of THP-1 monocyte-like cells to THP-1 macrophage-like cells. (a) mRNA

expression of the QKI isoforms as compared with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in THP-1 ‘monocytes’ and 8 days differentiated

THP-1 ‘macrophages’ (biological n¼ 3). Data expressed as mean±s.e.m.; Student’s t-test; *Po0.05 and **Po0.01. (b) Western blot analysis of whole-cell

lysates of THP-1 ‘monocytes’ and THP-1 ‘macrophages’. (c) Western blot quantification of QKI protein isoforms, normalized to b-actin in THP-1 ‘monocytes’

and THP-1 ‘macrophages’ (n¼ 3). Data expressed as mean±s.e.m.; Student’s t-test; **Po0.01. (d) Hierarchical clustering (Euclidean algorithm) of key

monocyte differentiation genes depicting changes in microarray-derived mRNA abundance THP-1 ‘monocytes’ (left two lanes) and THP-1 ‘macrophages’

(right two lanes), where dark blue¼ low expression, whereas light blue¼ high expression (* and/or # beside gene name is indicative of a significant Z1.5-

fold change in expression in monocytes or macrophages, respectively). (e) Venn diagrams depicting the number of microarray-derived differentially

expressed genes (minimally ±1.5-fold; sh-QKI/sh-Cont expression, q-valuer0.05) for unstimulated THP-1 ‘monocytes’ (left Venn diagram) and THP-1

‘macrophages’ (right Venn diagram). (f) The most significantly differentially expressed genes harbouring a QRE are shown. (g) Genome-wide scatterplot of

mRNA abundance in THP-1 ‘monocytes’ (left scatterplot) and THP-1 ‘macrophages’ (right scatterplot); y axis: Log10 probe intensity versus the x axis:

log2FC: sh-QKI average probe intensity/sh-Cont average probe intensity. Blue dots indicate QRE-containing transcripts that are minimally ±1.5 fold

differentially expressed (qr0.05). Grey dots do not fulfill these criteria. (h) CDF (y axis) for QKI target (QRE containing: blue line) and non-target (non-

QRE containing: cyan line) mRNAs (x axis: log2FC) in THP-1 ‘monocytes’ (left plot) and THP-1 ‘macrophages’ (right plot). Left shift indicates lower

expression of QKI target genes in the sh-QKI samples, whereas a right shift is indicative of higher expression of QKI targets in the sh-QKI samples.

Distributions were compared using a Wilcoxon rank-sum test.
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changes in QKI levels (Fig. 5g grey dots and Fig. 5h cyan lines).
Consistent with our analyses in PB monocytes, putative direct QKI
target mRNAs were mostly reduced on a targeted QKI reduction in
THP-1 ‘monocytes’ (Fig. 5h, left plot), although a shift towards
increased target mRNA abundance in THP-1 ‘macrophages’ was
not observed (Fig. 5h, right plot).

QKI modifies pre-mRNA splicing patterns in THP-1 cells.
Having identified that QKI haploinsufficiency generates
pre-mRNA splicing events that probably have an impact on
monocyte and macrophage biology, we also analysed RNA
isolated from sh-Cont and sh-QKI THP-1 ‘monocytes’ and
‘macrophages’ for alternative splicing events using the exon
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junction microarray platform44. This highly sensitive
technology uses probes that are designed specifically to detect
both constitutive exon–exon junctions and alternative exon–exon
junctions, enabling one to quantify inclusion ratios for alternative
splicing events. These studies uncovered 571 and 629
differentially regulated alternative splicing events in THP-1
‘monocytes’ and ‘macrophages’, respectively, including
numerous cassette exons, alternative 50- and 30-splice sites, and
retained introns (Fig. 6a and Supplementary Data 6; n¼ 3).
Detected splicing events are illustrated in Fig. 6b, where the
skip and include intensities (y axis and x axis, respectively)
of transcript-specific hybridization probes directed to either
the constitutive or alternatively spliced exons are plotted.
The separation score, obtained by determining slope
differences, indicates the magnitude of the splicing event.
Similar to the motif enrichment analyses performed for the
RNA-seq of PB monocytes and macrophages, these studies
confirmed that exon skipping frequency was significantly
correlated with alternative exons that had an ACUAA motif in
the upstream intron (Fig. 6c left panels and Supplementary Data
4). In contrast to the subtle enrichment of inclusion frequency
observed in Pat-QKIþ /� and Sib-QKIþ /þ monocytes and
macrophages (Fig. 3a right panels), exon inclusion frequency in
THP-1 ‘monocytes’ and ‘macrophages’ was clearly associated with
the presence of ACUAA motifs in the downstream intron (Fig. 6c
and Supplementary Data 4).

Finally, alternative cassette exons in THP-1 ‘monocytes’ and
‘macrophages’ were PCR validated (Fig. 6d). Importantly, we also
selected several top splicing events from THP-1 ‘monocytes’ and
‘macrophages’ (Supplementary Data 6), and validated these in
RNA harvested from wt and qkv mice, including REPS1, PTPRO
and FGFR1OP2 (Fig. 6e).

QKI targets monocyte activation and differentiation pathways.
We subsequently determined how QKI-induced changes in
mRNA transcript abundance could have an impact on Gene
Ontology (GO) enrichment of coordinately regulated pathways
during monocyte-to-macrophage differentiation. As shown in
Table 1 and Supplementary Data 7, these GO analyses point
towards a central regulatory role for QKI in immune responses to
injury, processes that play a critical role in the onset and
development of atherosclerosis and other inflammation-based
diseases. In both monocytes and macrophages, changes in QKI
expression clearly had an impact on Liver X Receptor (LXR)/
Retinoid X Receptor (RXR) activation and Peroxisome
Proliferator-Activated Receptor (PPAR) activation and signalling,
implicating a key role for QKI in regulating cholesterol
biosynthesis and metabolism. Furthermore, a reduction in QKI
expression also appeared to influence T-cell and Toll-like receptor
signalling, biological processes that play prominent roles in the
rapid resolution of infection, while in chronic settings exacerbate
inflammatory conditions. Finally, the gene enrichment analysis
suggested that posttranscriptional processing of factors driving
the recruitment, adhesion and diapedesis of immune cells were
affected by changes in QKI expression.

QKI facilitates monocyte adhesion and migration. Our
experimentally determined changes in (pre)-mRNA splicing and
expression, as well as bioinformatically predicted changes in
biological processes, prompted us to evaluate whether these
QKI-induced posttranscriptional modifications could affect
monocyte and macrophage function. To test this, we first assessed
whether cell survival is affected by a reduction of QKI expression
in THP-1 ‘monocytes’. Importantly, the cumulative population
doublings and apoptotic rates were not affected by decreased

QKI levels (Fig. 7a,b). Next, we assessed cell adhesion to glass
coverslips treated with effector molecules (collagen and activated
platelets) in the presence of fluid shear stress, an experimental
design that mimics the response of monocytes to endothelial
denudation in the vessel45. Live-cell imaging clearly showed that
the shRNA-mediated depletion of QKI in THP-1 ‘monocytes’
reduced cellular adhesion under flow conditions, as evidenced by
their continued rolling along the substrate and inability to firmly
attach (Fig. 7c and Supplementary Movies 1 and 2). This firm
adhesion of monocytes is aided by the activation of b1-integrins
on the cell surface that mediate high-affinity interactions with the
extracellular matrix at sites of injury36. We tested whether
QKI depletion had an impact on b1-integrin function by
incubating sh-Cont and sh-QKI THP-1 ‘monocytes’ with an
antibody (TS2/16) that forces b1-integrins into the activated,
adhesive conformation37. Interestingly, the abrogation of QKI did
not affect monocyte adhesion properties in this setting (Fig. 7d),
indicating that proper integrin expression and functionality is not
dependent on QKI.

We subsequently tested whether QKI expression levels could
have an impact on monocyte migration in vitro by seeding
sh-QKI or sh-Cont THP-1 ‘monocytes’ into transwell migration
chambers and assessed their ability to migrate towards the
chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP).
Indeed, depletion of QKI in monocytes inhibited migration
(Fig. 7e). This finding prompted us to similarly assess the capacity
of Pat-QKIþ /� and Sib-QKIþ /þ monocytes freshly isolated
from venous blood to migrate to macrophage chemoattractant
protein 1, a physiologic recruiter of monocytes at sites of vascular
injury. These studies revealed a significant reduction in transwell
migration for Pat-QKIþ /� monocytes (Fig. 7e), validating our
findings in THP-1 ‘monocytes’, and provided evidence that QKI
influences monocyte adhesion and migration in inflammatory
settings.

QKI drives foam cell formation. As QKI expression remarkably
increased during monocyte-tomacrophage differentiation
(Fig. 2c–f) and our aforementioned GO analysis revealed a strong
association for changes in QKI expression and lipid metabolism
(Fig. 7a), we tested whether a reduction in QKI expression
influences the handling of lipids. For this, we first assessed the
mRNA expression levels of a subset of established lipid-related
genes in monocytes and macrophages derived from WT and qkv

mice. As shown in Fig. 8a, monocytes from qkv mice are
characterized by significant reductions in NR1H3 (known as
LXRa) and PPARG (PPARg) expression, as well as cholesterol
uptake (CD36 and LDLR) and efflux (ABCG1) receptors, as
compared with WT monocytes. These effects were diminished on
conversion to macrophages (Fig. 8a).

We subsequently assessed the expression levels of these lipid
metabolism/homeostasis genes in human PB-derived monocytes
and macrophages (Fig. 8b and Supplementary Fig. 5). Similar to
qkv monocytes, Pat-QKIþ /� monocytes were characterized by
decreased NR1H3 and PPARG expression, as well as LDLR and
SCARB1 (Fig. 8b). In contrast to qkv monocytes, ABCG1
expression was potently increased. Similar to qkv macrophages,
this differential gene expression profile appeared to normalize in
Pat-QKIþ /� macrophages as compared with Sib-QKIþ /þ

macrophages (Fig. 8b). Moreover, in primary human macro-
phages where GapmeR-mediated knockdown of QKI was
realized, we observed significant increases in MYLIP/IDOL and
ABCG1 expression, whereas CD36 displayed a trend towards
decreased expression (Supplementary Fig. 5).

Having identified that changes in QKI expression levels
had an impact on lipid-associated gene expression, we

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10846

10 NATURE COMMUNICATIONS | 7:10846 | DOI: 10.1038/ncomms10846 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


c

b

CE: ADD3 CE: ADD3

Alt 5': MAPK7 Alt 5': FRMD1

Alt 3': GRASP Alt 3': KCNIP1

RI: CUGBP2 RI: CTSW

Include Include

120
160
200
240
280

120 180 240 300

S
ki

p

120

200

280

140 180 220 260

100
120
140
160

1,000 2,000 3,000

S
ki

p

2,000

2,400

2,800

3,200

300 340 380 420

300

400

500

600

2,000 4,000 6,000

S
ki

p

350 450 550 650
300
500
700
900

1,100

250

350

450

900 1,100 1,300

S
ki

p

350 450 550
200

400

600

800

sh-Cont sh-QKI

Unstimulated THP-1 ‘monocyte’

3d PMA THP-1 ‘macrophage’

0.04

0.00

0.08
0.04

0.00
04595160225 –20 40 90 145 210

0.06

0.00

0.12

04595160225

0.06

0.00

0.12

–20 40 90 145 210

Bases from the 5′-ssBases from the 3′-ss

sh-
QKI

sh-
Cont

sh-
QKI

sh-
Cont

PTPRO

ADD3

KIF13A

ERBB2IP

388 bp

292 bp

218 bp

164 bp
191 bp

468 bp

138 bp

134 bp

d

ss: –1.72
ss: 1.09

ss: 1.28
ss: –0.57

ss: –0.74
ss: 0.401

ss: –1.27
ss: 1.77

THP-1
‘monocyte’

THP-1
‘macrophage’

THP-1
‘monocyte’

THP-1
‘macrophage’

WT qkv qkv WT 

REPS1

PTPRO

FGFR1OP2

Mouse
monocytes

Mouse
macrophages

251 bp

170 bp

108 bp

192 bp

86 bp

200 bp

e

Exon IntronIntronACUAA ACUAA

Incl. freq.E
xc

l. 
fr

eq
. 

Incl. freq.E
xc

l. 
fr

eq
. 

94 129 140 95
Incl. Incl.Excl. Excl.

THP-1
‘monocyte’

(Unstimulated)

THP-1
‘macrophage’

(3d PMA)
Splice
event

Cassette exon

Alternative 5’ ss

Alternative 3’ ss

13 9 13 9

13 23 16 7

13 40 54 21
Retained intron

Alternative start

62 49 42 61

29 34 55 49

Mutually exclusive

1 0 0 2

Twin cassette

8 4 8 6

Alternative end
PolyA PolyA

Complex23 27 27 24

a

Figure 6 | QKI expression levels influence pre-mRNA splicing during THP-1-based monocyte-like to macrophage-like cell differentiation.

(a) Schematic depicting detectable alternative splicing events with the splicing-sensitive microarray platform and number of inclusion (incl.; top lines) or

exclusion (excl.; bottom lines) events observed in unstimulated THP-1 ‘monocytes’ (left) and 3-day PMA-stimulated THP-1 ‘macrophages’ (n¼ 3, qr0.05).

(b) Scatterplots of skip (y axis) and include (x axis) probe set intensity for selected alternative splicing events in sh-Cont (blue boxes) versus sh-QKI

(orange circles) in unstimulated and 3 days PMA-stimulated THP-1 ‘monocytes’ and ‘macrophages’, respectively. Regression coefficients (constrained to

pass the origin) are depicted as solid lines. The log2 difference in the slopes (termed separation score; ss) are provided to the right of the plots for each

event, with for example, an ss of � 1.72, indicating a 3.3-fold more inclusion of ADD3 exon 13 in sh-QKI versus sh-Cont THP-1 ‘monocytes’. Full event

details are provided in Supplementary Data 6. CE, cassette exon; Alt 50 or 30, alternative 50 or 30 splice site; RI, retained intron. (c) SpliceTrap assessment of

average proximal ACUAA RNA motif enrichment in 50 bp windows upstream and downstream of alternatively spliced cassette exons as compared with a

background set of exons (grey circles). The relationship between the frequency of exon exclusion (blue triangles) or exon inclusion (red squares) and

ACUAA RNA motif enrichment are depicted. (d) PCR validation of alternatively spliced cassette exons in sh-Cont and sh-QKI THP-1 ‘monocytes’ and

‘macrophages’. Primers were designed to target constitutive flanking exons. PCR product size for exon inclusion (top) and exclusion (bottom) variants are

provided (left). All experiments depict biological n¼ 3. (e) PCR validation of three splicing events in wt and qkv mouse-derived primary monocytes and 7

days M-CSF-stimulated macrophages. PCR product size for exon inclusion (top) and exclusion (bottom) variants are provided (left). Depicted is a

representative PCR for at least a biological nZ3.
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investigated whether lipid loading affected QKI expression
levels. Indeed, treatment with either acetylated low-density
lipoprotein (acLDL) or b-very low-density lipoprotein
(b-VLDL) led to significant increases in QKI-5 mRNA
levels, while QKI-6 and QKI-7 levels also increased, albeit not
significantly (Fig. 8c). In contrast to primary monocytes and
macrophages, THP-1 ‘monocytes’ did not display signi-
ficant changes in lipid metabolism gene expression.
However, as shown in Fig. 8d, treatment with modified LDL
increased expression of cholesterol uptake genes (CD36 and
VLDLR), along with significant increases in cholesterol efflux
genes (ABCA1 and ABCG1). Taken together, these studies
suggested that changes in QKI expression could have an impact
on the net balance of genes that control lipid metabolism and
homeostasis.

Finally, we tested whether these QKI-mediated changes in
lipid-associated gene expression could translate into conse-
quences for lipid uptake and foam cell formation, a phenomenon
tightly associated with pro-inflammatory macrophage function7.
As shown in Fig. 8e, the impact of decreased QKI expression on
foam cell formation on loading with b-VLDL was clear, as

sh-QKI THP-1 ‘macrophages’ displayed less extensive lipid
staining as compared with sh-Cont THP-1 ‘macrophages’
(Fig. 8e). Similarly, in Pat-QKIþ /� macrophages we observed
significantly less lipid staining after b-VLDL treatment (Fig. 8f).
Even more striking was the potent decrease in oxidized LDL
(oxLDL) loading, an atherosclerosis-relevant antigen, in
Pat-QKIþ /� macrophages (Fig. 8f). Collectively, these studies
strongly suggested that the posttranscriptional processing of
(pre-) mRNA transcripts by QKI is essential for the physiologic
functioning of monocytes and macrophages in disease settings
such as atherosclerosis.

Discussion
Genes involved in regulating the transition of monocytes into
pro-inflammatory macrophages serve as excellent therapeutic
targets for limiting the progression of inflammation-driven
diseases such as rheumatoid arthritis and atherosclerosis3,6. Our
data indicate that alongside wide-ranging changes in gene
expression, the differentiation of monocytes to macrophages
requires extensive alternative splicing of pre-mRNA species and

Table 1 | IPA assessment of pre-defined canonical pathways affected by changes in QKI expression.

Monocytes Macrophages

THP-1 sh-QKI
versus sh-Cont

THP-1 sh-QKI
versus sh-Cont

Affected canonical
pathway

� Log
(P-value)

Affected genes Affected canonical
pathway

� Log
(P-value)

Affected genes

Atherosclerosis
signalling

9.2 CXCL8, APOE, ICAM1, PDGFA, PLA2,
G4C, CCR2, F3, LYZ, CCL2, ORM1,
APOC1, IL1B, ORM2, PDGFD, TNF

Superpathway of
cholesterol biosynthesis

10.6 FDPS, PDFT1, EBP, DHCR7, ACAT2, IDI1,
HSD17B7, MSMO1, HMGCS1, CYP51A1

Superpathway of
cholesterol biosynthesis

8.2 MVD, FDPS, CHCR7, ACAT2,
HSD17B7, MSMO1,
HMGCS1,CYP51A1

Cholesterol biosynthesis I,
II, and III

8.1 FDFT1, EBP, DHCR7, DHCR24, HSD17B7,
MSMO1, CYP51A1

LXR/RXR activation 7.4 SCD, APOE, LYZ, ORM1, CCL2,
APOC1, IL1B, ORM2, CD14, PTGS2,
IL1RAP, TNF, CYP51A1

Superpathway of
gernanylgeranylphosphate
Biosynthesis I

4.4 FDPS, ACAT2, IDI1, FNTB, HMGCS1

Hepatic fibrosis/hepatic
stellate cell activation

6.1 CXCL8, APOE, ICAM1, PDGFA, PLA2,
G4C, CCR2, F3, LYZ, CCL2, ORM1,
APOC1, IL1B, ORM2, PDGFD, TNF

LXR/RXR activation 4.4 SCD, FDFT1, LYZ, IL1A, LDLR, IL36RN, NR1H3,
IL6, CLU, CYP51A1, IL36B, AGT

PPAR signalling 5.8 PPARG, JUN, PPARD, PDGFA, MRAS,
IL1B, PTGS2,PDGFD, TNF, IL1RAP

Altered T-cell and B-cell
signalling in rheumatoid
arthritis

4.3 IL1A, CSF1, IL36RN, TLR6, TLR8, TLR7, IL6,
CSF2, IL36B, IL17A

RNA-seq Pat-QKI
versus Sib-QKI

RNA-seq Pat-QKI
versus Sib-QKI

Affected canonical
pathway

� Log
(P-value)

Affected genes Affected canonical
pathway

� Log
(P-value)

Affected genes

T-cell receptor signalling 8.9 CD247, PTPN7, CAMK4, PRKCQ,
CD3E, PLCG1, CD8A, CD3D,CD8B,
CD28, CD3G, LCK, TXK, ZAP70, ITK

Granulocyte adhesion and
diapedesis

4.9 CXCL8, IL1A, HRH2, MMP7, SDC1, PPBP,
ITGA6, RDX, CCL24, CCL17, MMP2, CCL22,
C5, FPR1, CCL13, ICAM2, IL1RN, MMP19,
ITGA4

CCR5 signalling in
macrophages

7.8 CD247, CD3G, CCR5, CAMK4,
PRKCQ, CCL4, CD3E, PLCG2, PLCG1,
CCL3, CD3D, GNG10

Agranulocyte adhesion
and diapedesis

4 CXCL8, MMP7, IL1A, PPBP, ITGA6, RDX,
CCL24, CCL17, MMP2, CCL22, C5, MYL9,
CCL13, ICAM2, IL1RN, PODXL, MMP19,
ITGA4

Role of NFAT in
regulation of the immune
response

7 CD247, CAMK4, PRKCQ, CD3E,
GCER1A, PLCG1, CD3D, GNG10,
CD28, CD3G, LCK, GNAT1, PLCG2,
ZAP70, FCGR3A/GCGR3B, FCGR1B,
ITK

Toll-like receptor signalling 3 MAP2K6, IL1A, TICAM2, IL1RN, TLR7,
MAPK13, TLR3, IRAK2, TRAF1

EIF2 signalling 5.8 RPL24, RPL36A, RPS3A, RPS27,
RPL17, RPS18, RPS10, RPL39, RPL12,
RPL7A, RPL7, RPL9, RPS28, RPL23A,
RPL39L, RPSA

Cysteine biosynthesis/
homocysteine degradation

2.9 CBS/CBSL, CTH

iCOS-iCOSL signalling in
T-helper cells

5.7 CD247, CD3G, CD28, LCK, CAMK4,
PRKCQ, CD3E, ZAP70, PLCG1, CD3D,
ICOSLG/LOC102723996, ITK

Axonal guidance signalling 2.9 SLIT3, ERAP2, MMP7, SLIT1, PDGFA,
SEMA6A, BCAR1, TUBB2B, EPHB1, TUBA8,
MYSM1, PRKAR1B, GNB1L, WNT5B, ITGA4,
SEMA3G, PAK4, ADAM15, TUBA4A, MMP2,
KEL, MYL9, FZD4, ADAM12, SEMA4G,
SEMA7A, FZD7

IPA, Ingenuity Pathway Analysis; QKI, Quaking.
The top five affected canonical pathways are shown, along with their respective –log(P-value) and the genes that are affected within the particular pathway. Full IPA output is provided in Supplementary
Data 7.
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pinpoint QKI as a novel posttranscriptional regulator of both of
these processes (Fig. 9).

Expression of the transcription factor PU.1 is associated with
the activation of gene expression profiles that drive the
differentiation of CD34þ haematopoietic progenitor cells

towards a myeloid fate, including monocytes and macro-
phages46,47. Recent work by Pham et al.48 identified that the
binding of PU.1 appears to be enhanced by cooperativity with
neighbouring transcription factor binding sites, such as KLF4.
Importantly, PU.1 induces the expression of critical monocyte
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Figure 7 | QKI expression levels have an impact on monocyte adhesion as well as migration and differentiation. (a) Cumulative population doublings (y
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using linear regression analysis.(b) Quantification of cellular apoptosis, where annexin Vþ and propidium iodideþ cells were categorized as apoptotic, as

determined by FACS analysis. (c) Quantification of sh-Cont and sh-QKI THP-1 ‘monocyte’ adhesion to collagen matrix pretreated with platelet-rich plasma

under flow, mimicking in-vivo endothelial denudation. Direction of flow is indicated below the photomicrographs (n¼ 3). Data expressed as mean±s.e.m.;

Student’s t-test; *Po0.05. Scale bar, 100mm. (Also see Supplementary Movies 1 and 2). (d) Assessment of integrin-mediated adhesion. Quantification of

adhesion to collagen for untreated, PMA- or TS2/16-treated sh-Cont and sh-QKI THP-1 ‘monocytes’ are plotted. TS2/16 is an antibody that turns all

b1-integrins in the high-affinity conformation, inducing cellular adhesion. (e) Quantification of cellular transwell migration towards either fMLP (for THP-1

‘monocytes’) or macrophage chemoattractant protein 1 (MCP-1; for PB monocytes from either sibling or patient (n¼4 technical replicates). Data expressed

as mean±s.e.m.; Student’s t-test; *Po0.05 and **Po0.01.
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transcription factors, including KLF4 (ref. 49). Of note, KLF4 has
been demonstrated to bind to the QKI promoter region of
VSMCs, which is GC rich50. Furthermore, chromatin
immunoprecipitation sequencing data derived from HL-60 cells
embedded in the UCSC Encode browser revealed two
experimentally determined PU.1-binding sites in the QKI
promoter51 (Supplementary Fig. 6). Collectively, these findings
suggest that PU.1, potentially in concert with KLF4, could be
responsible for driving QKI expression during monocyte-to-
macrophage differentiation.

Our findings also suggest that the abundant expression of
QKI mRNAs in naive monocytes could serve to prime these
cells with the capacity to rapidly respond to pro-inflammatory
triggers at sites of injury. Although we did not assess
the translational kinetics of QKI mRNA into protein, our
investigation of monocyte activation, adhesion and differentiation
strongly suggests that the determination of pre-mRNA fate by
QKI critically has an impact on the capacity of the monocyte to
aid in response to vascular injury. To date, the genome-wide
(alternative) splicing patterns during monocyte-to-macrophage
differentiation had not been described. However, the
consequences of many splicing events herein described, such as
g-adducin (ADD3), FCGR2B and VLDLR are unknown.
However, given that phosphorylation of the g-adducin
C terminus triggers dissociation from spectrin and cortical actin
loss52, it is plausible that the QKI-mediated exclusion of a 13
amino acid coding exon proximal to this region could have an
impact on cytoskeletal dynamics in monocytes and macrophages.
Furthermore, alternative splicing of exon 6 in FCGR2B could
potentially have an impact on the inhibitory role of this protein in
monocyte- and macrophage-mediated phagocytosis at sites of
vascular injury53. Therapeutic strategies tailored to target such
splicing events in monocytes could potentially deter their
conversion to disease-accelerating macrophages.

The expanding repertoire of RNA species have led to the
emergence of RNA-based therapeutics as a novel means of
treating both rare and common diseases, such as muscular
dystrophy and cancer, respectively54,55. This is based on extensive
efforts geared towards identifying how changes in coding
(alternative splicing) and non-coding RNAs (miRNA and long-
non-coding RNA) have an impact on cellular pathophysiology56.
Importantly, the fate of these coding and non-coding RNAs
at the cellular level are determined primarily by the more than
500 RBPs that regulate eukaryotic cell biology32. Recently, the
RNA motifs to which a significant portion of these RBPs bind has
been characterized32, enabling the systematic identification of
RNA targets for a given RBP within cells, including QKI29–32.
Our genome-wide evaluation of posttranscriptional events
mediated by QKI implicate both direct and indirect
posttranscriptional roles for this protein, where the absence
of ACUAA motifs or QREs could nonetheless involve QKI,
potentially by tethering to other RBPs, or through QKI-mediated
changes in the expression of other RBPs57. Moreover, in spite

of the presence of QREs within target mRNAs, monocytes
and macrophages probably express a large variety of RBPs
that compete with QKI for access to either identical or similar
motifs with varying affinities within a short stretch of RNA
nucleotides19, which could preclude the observation of a
posttranscriptional event.

In conclusion, we have identified QKI as a critical posttran-
scriptional regulator of pre-mRNA splicing and transcript
abundance in monocytes and macrophages. We propose that
the RBP-induced reprogramming of the posttranscriptional
landscape could generate novel targets for the effective
attenuation of inflammatory diseases.

Note added in proof: After the acceptance of our paper, we were
informed by Dehghan et al.58 of the CHARGE Consortium’s
identification that single nucleotide polymorphisms proximal to
QKI significantly associated with myocardial infarction and
coronary heart disease risk.

Methods
Human immunohistochemistry studies. Early lesions are defined as fatty streaks
or PIT, whereas advanced plaques consist of both FCA and IPH (fibroatheroma with
early-stage or late-stage necrotic core). Scoring of plaque stage, based on character-
istics such as thin cap fibroatheroma (vulnerable or ruptured plaques), vasculariza-
tion, IPH and/or thrombi/fibrin deposits, were scored by a trained pathologist.

Paraffin tissue sections from human carotid arteries were deparaffinized and
rehydrated. After pre-treatment with TE buffer (pH 9 for QKI-5 and QKI-7) or
citrate buffer (pH 6 for QKI 6) for antigen retrieval, sections were incubated
overnight at 4 �C with primary mouse-anti-human pan-QKI (10mg ml� 1, clone
N147/6; UC Davis/NIH NeuroMab Facility, Davis, CA, USA), mouse anti-human
QKI-5 (10 mg ml� 1, clone N195A/16; NeuroMab/Antibodies, Inc.); mouse
anti-human QKI-6 (10 mg ml� 1, clone N182/17; NeuroMab/Antibodies Inc.) or
mouse anti-human QKI-7 (10 mg ml� 1, clone N183/15; NeuroMab/Antibodies
Inc.) diluted in Tris-buffered saline containing 1% BSA and 0.1% Tween 20.
Subsequently, sections were washed in Tris-buffered saline and incubated with a
secondary biotinylated sheep-anti-mouse antibody (GE Healthcare, Eindhoven,
The Netherlands). Next, the sections were incubated with streptavidin
ABC-alkaline phosphatase (Vector Laboratories, Peterborough, UK) and colour
was developed using the Vector Red staining kit (Vector Laboratories), followed by
haematoxylin counterstaining. No primary antibody was used for the negative
control. QKI/CD68 co-localization immunostaining was achieved using CD68
(Dako-KP1, DakoCytomation) and pan-QKI antibodies, with CD68 and QKI being
counterstained with Vector Blue and Vector Red, respectively. For quantification,
slides were analysed in a blinded manner using a Leica DM3000 light microscope
(Leica Microsystems) coupled to computerized morphometry (Leica Qwin 3.5.1).

BM transplantation. Male LDLR� /� mice were housed in sterile filter-top cages
and fed a chow diet (Special Diet Services, Witham, Essex, UK). Drinking water
was infused with antibiotics (83 mg l� 1 ciprofloxacin and 67 mg l� 1 polymyxin
B sulfate) and 6.5 g l� 1 sugar and was provided ad libitum. BM transplantation
studies were performed as previously described with minor modifications59.
Briefly, to induce BM aplasia, 10- to 12-week-old recipient mice were exposed to
a single dose of 9 Gy (0.19 Gy min� 1, 200 kV, 4 mA) total body irradiation,
using an Andrex Smart 225 Röntgen source (YXLON International, Copenhagen,
Denmark) with a 6-mm aluminium filter, 1 day before transplantation. After
24 h, BM cell suspensions were prepared by flushing the femurs of B12-week-old
qkv mice or age-matched LM controls (C57/Bl6-J background; Jackson
Laboratories, Bar Harbor, USA) with PBS, after which 5� 106 cells were
injected into the tail vein of recipient mice. After 8 weeks of recovery, the

Figure 8 | QKI regulates the expression of atherosclerosis-related mRNAs and impairs foam cell formation. (a) Quantitative RT–PCR (qRT–PCR)

analysis of established atherosclerosis-related genes in wt of qkv-derived monocytes and macrophages. Gene expression in qkv samples are relative to

either WT monocytes or WT macrophages (nZ3). Data expressed as mean±s.e.m.; Student’s t-test; *Po0.05, **Po0.01. (b) RNA-seq-derived expression

values to illustrate the expression of established atherosclerosis-related genes in sibling or patient monocytes and macrophages. (c) qRT–PCR analysis of

QKI isoform mRNA expression in unstimulated THP-1 ‘macrophages’, or treated with b-VLDL or acLDL for 24 h. Data expressed as mean±s.e.m.; one-way

analysis of variance (ANOVA), Bonferroni’s post-hoc test; *Po0.05. (d) qRT–PCR analysis of well-known atherosclerosis-related genes in sh-cont or sh-QKI

THP-1 ‘macrophages’ that were either left untreated or treated with acLDL or b-VLDL to induce foam cell formation (n¼ 3). Data expressed as

mean±s.e.m.; Student’s t-test; *Po0.05 and **Po0.01. (e) Photomicrographs of an Oil-red-O staining to assess b-VLDL, acLDL uptake in either sh-Cont

or sh-QKI THP-1 ‘macrophages’. Scale bar, 100mm. Inset is a high-magnification image of lipid-droplet accumulation. Data expressed as mean±s.e.m.;

Student’s t-test; **Po0.01. (f) Photomicrographs of an Oil-red-O staining to assess b-VLDL, acLDL or oxidized LDL (oxLDL) uptake in either Sib-QKIþ /þ

(upper panels) or Pat-QKIþ /� (lower panels) macrophages that were first differentiated for 7 days with GM-CSF. Scale bar, 100mm. Inset is a

high-magnification image of lipid-droplet accumulation. Data expressed as mean±s.e.m.; Student’s t-test; *Po0.05 and **Po0.01.
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mice were placed on a Western-type diet, containing 0.25% cholesterol
and 15% cacao butter (Special Diet Services) for 8 weeks (n¼ 12 per group).
Immunohistochemical analysis and quantification of the aortic root using
anti-Monocyte and Macrophage-2 (MOMA2) antibody (Sigma-Aldrich) for
MOMA2-positive cell area (expressed as a percentage of total plaque area),
VSMC content (smooth muscle a-actin-positive cells) and collagen (picosirius
red staining) was performed in a blinded manner. Haematologic chimerism of the

transplanted LDLR� /� mice was validated using the following primers: qk
forward primer 50-TGTGACTTGGGGACTGTCAA-30; qk reverse primer 50-
AAAGGGAAAATTTAGCAACAA-30 .

BM-derived WT and qkv monocytes were isolated using CD115þ antibody
coupled to magnetic beads (Miltenyi Biotech, Leiden, The Netherlands) and
differentiated for 7 days to macrophages using mouse recombinant M-CSF
(PeproTech, Hamburg, Germany) in RPMI 1640 medium (Gibco, Bleiswijk, The

wt mono

wt macro

qk v mono

sh-cont 

sh-cont 

sh-QKI 

sh-QKI 

sh-cont 
sh-QKI 

c

d

Primary mouse cells

THP-1 ‘macrophages’

un
st

im
ac

LD
L

β-
V

LD
L

*

* ** *

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ID
OL

ABCG1

ABCA1

SCARB1

PPARA

PPARD

PPARG

APOE
CD36

LD
LR

VLD
LR

NR1H
2/

LX
RB

NR1H
3/

LX
RA

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

R
el

. m
R

N
A

 e
xp

r. *
* * **

ID
OL

ABCG1

ABCA1

PPARD

PPARG

NR1H
2/

LX
RB

NR1H
3/

LX
RA

APOE
CD36

LD
LR

VLD
LR

SCARB1

**

Sib mono

Sib macro

Pat mono

Pat macro

0

0.5

1.0

1.5

2.0

2.5

nd

R
e

l. 
m

R
N

A
 e

xp
r.

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 * *

Unstim
acLDL
β-VLDL

ID
OL

ABCG1

ABCA1

PPARD

PPARG

NR1H
2/

LX
RB

NR1H
3/

LX
RA

APOE
CD36

LD
LR

VLD
LR

SCARB1

THP-1 ‘macrophages’

5'q
kI

pr
im

er
s

QKI-5
QKI-6

QKI-7

β-VLDL β-VLDLacLDL acLDL oxLDL

sh
-C

on
t

sh
-Q

K
I

P
at

-Q
K

I+
/–

S
ib

-Q
K

I+
/+

0

1

2

3

**

P
ix

el
s/

ce
ll 

(×
10

3 )

P
ix

el
s/

ce
ll 

(×
10

3 )

P
ix

el
s/

ce
ll 

(×
10

3 )

P
ix

el
s/

ce
ll 

(×
10

2 )

P
ix

el
s/

ce
ll 

(×
10

2 )

sh-
Cont

sh-
QKI

sh-
Cont

sh-
QKI

0

1

2

3

0

0.5

1.0

1.5

2.0

2.5

Sib-
QKI +/+

Pat-
QKI +/–

Sib-
QKI +/+

Pat-
QKI +/–

Sib-
QKI +/+

Pat-
QKI +/–

*

0

1

2

3

4

0

0.5

1.0

1.5

2.0

2.5

**

*

β-VLDL β-VLDLacLDL acLDL oxLDL

THP-1 ‘Macrophages’ Patient and sibling macrophagese f

qk v macro

a

b

R
e

l. 
m

R
N

A
 e

xp
r.

R
e

l. 
m

R
N

A
 e

xp
r.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10846 ARTICLE

NATURE COMMUNICATIONS | 7:10846 | DOI: 10.1038/ncomms10846 | www.nature.com/naturecommunications 15

http://www.nature.com/naturecommunications


Netherlands) containing 10% FCS (Bodinco, Alkmaar, The Netherlands) and
0.01 mg ml� 1 glutamine, 50 units per ml penicillin and 50 mg ml� 1 streptomycin.

Lentiviral transduction of monocytes. Human THP-1 ‘monocytes’ (ATCC,
Manassas, VA, USA) were transduced with lentiviral particles encoding
either sh-QKI or sh-Cont (catalogue number: SHC202; MISSION library,

Sigma-Aldrich). Stable transductants were selected using 3 mg ml� 1 puromycin
(Sigma-Aldrich) for 72 h.

GapmeR design. A single-stranded RNA–DNA hybrid antisense
oligonucleotide (GapmeR) was designed to target exon 2 of QKI (Eurogentec,
Maastricht, The Netherlands), along with a scrambled GapmeR control. Both
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QKI mRNA expression increases in intermediate monocytes, reaching a peak in the non-classical monocyte (middle). Monocytes adhere to the

endothelium at sites of tissue injury, leading to their activation and migration into the subendothelial space. This process requires QKI, as the targeted

ablation of QKI impaired monocyte adhesion and migration, and the evident transition in cellular phenotype requires extensive reprogramming of the

posttranscriptional landscape. On tissue entrance, the monocyte differentiates into a macrophage, a conversion that was associated with a potent increase

in QKI protein. This increase potentiates the interaction of QKI with (pre-)mRNA targets, enhancing splicing and target mRNA repression. The loss of QKI

in macrophages results in an inability to adopt the macrophage phenotype and a perturbation of lipid uptake and foam cell formation.
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the GapmeR and scrambled control were 22 nucleotides in length and consisted
of RNA (A,C,G,U) and DNA (dA, dC, dG, dT) in a 6-10-6 manner, with a
phosphorothioate backbone (*) and a 6-FAM label on the 50-end. GapmeR
sequences were as follows:50-A*C*A*U*G*U*dC*dT*dT*dT*dC*dC*dG*dT*
dA*dC*U*C*U*G*C*U-30 for the QKI-targeting GapmeR and 50-U*G*C*C*U*C*
dT*dC*dT*dC*dG*dT*dA*dC*dC *dG*U*A*U*U*U*A-30 for the scrambled
control.

Monocyte subpopulation analysis. Human monocytes were derived from healthy
donor buffy coats (Ethical Approval Number BTL 10.090) following Ficoll
density gradient centrifugation and isolated from the PB mononuclear cell fraction
using a negative selection cocktail to isolate unlabelled monocytes (StemCell
Technologies, Grenoble, France). Purified monocytes were subsequently incubated
with 1 mg ml� 1 CD14-FITC and 1 mg ml� 1 CD16-Pc5 (Beckman Coulter,
Woerden, The Netherlands) for 30 min at 4 �C and FACS sorted using a
FACSCalibur (BD Biosciences, Breda, The Netherlands). RNA was isolated from
the subpopulations using Trizol reagent (Thermo Fisher Scientific, Bleiswijk,
The Netherlands).

Monocyte and macrophage culture. Human monocytes were isolated from buffy
coats of healthy donors with an antibody to CD14, conjugated to magnetic beads to
allow for MACS sorting (Miltenyi Biotech). Cells were cultured in RPMI media
supplemented with 10% FCS and 0.01 mg ml� 1 glutamine at 37 �C and 5% CO2.
Differentiation of primary CD14þ monocytes to pro-inflammatory macrophages
was achieved by stimulating with 5 ng ml� 1 GM-CSF (Thermo Fisher Scientific) or
5 ng ml� 1 M-CSF (Miltenyi Biotech). Human THP-1 ‘monocytes’ were cultured in
RPMI media supplemented with 10% FCS and 0.01 mg ml� 1 glutamine at 37 �C
and 5% CO2, with differentiation into macrophages being induced by treating with
100 nM PMA60. TS/216 for integrin activation experiments was kindly provided by
Dr Arnoud Sonneberg, Netherlands Cancer Institute, Amsterdam, The
Netherlands. Foam-cell formation was assessed by treating sh-Cont and sh-QKI
THP-1 ‘macrophages’ or Sib-QKIþ /þ and Pat-QKIþ /� macrophages for 24 h
with either 25 mg ml� 1 b-VLDL or 50 mg ml� 1 acLDL, or 10 mg ml� 1 oxLDL, after
which the cells were fixed with 10% Formafix, and Oil-Red-O stained and
haematoxylin counterstained. Oil-Red-O area per field of view was divided by the
number of cells using ImageJ software.

In vitro perfusion assay. Glass coverslips were coated with type I collagen, after
which the system was perfused with platelet-rich plasma for 10 min. Next, the
system was flushed with flow buffer (20 mmol l� 1 HEPES, 132 mmol l� 1 NaCl,
6 mmol l� KCl, 1 mmol l� 1 MgSO4, 1.2 mmol l� 1 KH2PO4, 5 mmol l� 1 glucose,
1.0 mmol l� 1 CaCl2 and 0.5% BSA) for 2 min. Sh-Cont and sh-QKI THP-1
were resuspended in flow buffer at a concentration of 4� 106 ml� 1, after which
the cells were perfused over the substrate for 5 min at 1 dyne cm� 2. Cellular
adhesion was tracked visually using a Leica DMI5000 microscope. The flow rate
was subsequently increased to 2 dynes cm2 for 2 min, followed by the visual
assessment of firm adhesion of perfused monocytes for a duration of 3 min, after
which photomicrographs of ten random fields of view in the fluidic chamber were
taken and quantified.

Cellular migration assays. Transwell cellular migration studies of sh-Cont and
sh-QkI THP-1 ‘monocytes’ towards 1 nM N-formyl-methionyl-leucyl-phenylala-
nine (fMLP, Sigma-Aldrich) or 10 ng ml� 1 macrophage chemoattractant protein 1
(R&D Systems, Abingdon, UK) for human primary monocytes were performed
as previously described61. Briefly, cell migration was assessed using Corning
Transwell polycarbonate membrane cell culture inserts (6.5 mm transwell with
5.0 mm pore size, Sigma). The lower chamber was loaded with RPMI containing
0.25% BSA and desired chemoattractant. Wells containing no chemoattractant
were used as negative controls. Cells were loaded in the upper chamber of the
transwell inserts (105 cells) and incubated overnight at 37 �C. The following day,
cell migration (adherent cells) was quantified by manual counting or ImageJ.

Gene expression microarrays. RNA was isolated from unstimulated sh-Cont and
sh-QkI THP-1 ‘monocytes’ (day 0), and from sh-Cont and sh-QkI THP-1 cells
stimulated with 100 nM PMA for 3 days using Trizol (Thermo Fisher Scientific)
and the RNeasy Mini Kit (Qiagen, Heidelberg, Germany) according to the
manufacturer’s instructions. RNA quantity and quality was measured using a
NanoDrop spectrophotometer (Nanodrop Technologies, Wesington, USA) and an
Agilent 2100 bioanalyser (Agilent Technologies, Santa Clara, USA). Samples
meeting a RNA integrity number critieria of 48 were used for further analysis.

Splicing microarrays. Microarray data is deposited in GEO under the accession
number GSE74887. Targets were prepared from three replicate cultures for each
sample. Complementary DNA synthesis and amplification was performed using
the WT Expression Kit (Ambion, Bleiswijk, The Netherlands). Samples were
enzymatically fragmented and biotinylated using the WT Terminal Labeling Kit
(Affymetrix, Santa Clara, California, USA). Labelled target was hybridized to the

HJAY Chip (Affymetrix 540091). Chips were washed and scanned using the
Fluidics Station 450 and Affymetrix Gene ChIP Scanner 3000 7G (Affymetrix).
Data were analysed as previously described62. Briefly, in the absence of mismatch
probes on these microarrays, probe intensities were first used to construct an
empirical CDF, which was subsequently used to calculate an empirical P-value that
a particular probe’s intensity arose from the background of all probes. Probes were
stratified for GC content (thermodynamically favourable GC base pairing). For
each probe set, the median P-value of the set of individual probes in the probe set
was used as the P-value for that probe set. Before assessing for alternatively spliced
transcripts from a particular locus, we first determined whether the gene was
expressed. Next, if the expression criteria was met, we determined whether RNA
containing two or more alternative splice junctions was detectable using the
isoform-specific probes. In situations where the probe sets for two or more
alternative isoforms were ‘present’ in any sample of the data, an alternative splicing
event was scored. For these events, the junction probe sets that hybridized to
individual isoforms were identified and the probes they contained were used for the
Kruskal–Wallis test. Next, we normalized individual probe intensities and grouped
the replicate values. Subsequently, using R software, the kruskal.test function
was used to test the hypothesis that the probe intensities come from identical
populations. If the resulting P-value was small enough, the null hypothesis was
rejected and the alternative hypothesis that the probes were differentially expressed
was accepted. To determine an appropriate value for the 0.01 significance level,
12,740 Kruskal–Wallis tests on randomly selected probe sets were performed,
yielding an a-value that associated with the 1% quantile of randomly selected
probes (1.975486� 10� 3). To account for multiple testing, a Bonferroni-corrected
a-value of 1.975486� 10� 3/1.2740� 104¼ 1.550617� 10� 7 was used as a
P-value cutoff for significance. The Sepscore is log2 (Include/Skip ratio) of the
experimental sample over the reference sample. Exon inclusion generates a positive
Sepscore, whereas exon exclusion generates a negative Sepscore.

Word (5-mer) enrichment and positional mapping. Counts of all 5-mers
(ACUAA) in the selected region of an exon set are compared with their counts
from a background set of sequences using Fisher’s exact test, with multiple testing
correction. For motif mapping, we plotted the frequency of specific motifs in 50-
nucleotide windows slid along the intron sequences upstream and downstream of
each selected exon set with 5-nucleotide sampling intervals. At each interval, we
computed the average number of motifs in exons activated or repressed in
shRNA-treated cells, and background exons in the same experiment with no
splicing change. For the background set, we empirically estimated the 95%
confidence interval of motif frequency (error bars). For peaks of consecutive points
outside the 95% interval, we applied the Mann–Whitney–Wilcoxon test to estimate
a P-value that the motif frequency at each point within the peak is greater than
background. As the points were not independent, we estimated a q-value for each
peak by finding the most significant P-value for any point in the peak and applying
Bonferroni correction for the number of points within the peak. A second
Bonferroni correction controlled for the number of possible positions at which a
peak might occur, yielding the final q-values. To explain further; the effect of QKI
depletion on every assessed exon was calculated from the RNA-seq or the splicing-
sensitive microarray: that is, whether a reduction in QKI causes inclusion or
exclusion from the final mature mRNA transcript.

Next, the intronic regions around differentially spliced exons were analysed for
the presence of ACUAA motifs (5-mers). By doing this for every alternatively spliced
exon, we could detect an enrichment of ACUAA motifs in the upstream introns of
the exons that were included in a ‘QKI-deficient’ cell: QKI is not binding upstream;
thus, the exon is included, as measured by RNA-seq or splicing-sensitive microarray.

In contrast, we could detect an enrichment of ACUAA motifs in the
downstream introns of the exons that are included on QKI reduction. QKI binding
in the downstream intron would normally give inclusion, but now QKI cannot
bind downstream; thus, exclusion is now favoured as assessed by the RNA-seq or
splicing-sensitive microarray.

RNA-seq library preparation. RNA-seq data are deposited in GEO under the
accession number GSE74979. For each sample, the non-ribosomal fraction of
3 mg of total RNA was isolated using a Ribo-Zero rRNA removal Kit (Epicentre,
Madison, Wisconsin, USA). Ribo-Zero-treated RNAs were used to generate
barcoded cDNA libraries using the TruSeq RNA Sample Preparation kit (Illumina),
with the following additions. Size selections were performed before and after cDNA
amplification on an E-gel Safe Imager (Invitrogen) using 2% E-gel SizeSelect gels
(Invitrogen). The cDNA fraction of 300 bp in size (including adapters) was isolated
and purified. Indexed libraries were pooled and sequenced (paired-end 50 or
100 bp reads) on the Illumina HiSEQ platform to a depth of 41–70 million reads
per sample (QB3 Vincent J. Coates Genomics Sequencing Laboratory). After
removal of PCR duplicates and repeats, there were 21–26 million uniquely
mapping paired-end reads (37–61%).

Mapping and analysis of RNA-seq data. All samples were mapped using
Tophat2 (refs 63,64) with Bowtie2 (ref. 64) as the underlying alignment tool. The
input Illumina fastq files consisted of paired-end reads with each end containing
100 bp (except for 2 samples with 50 bp of paired-end reads). For equivalency,
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100-bp reads were trimmed to 50 bp before mapping. The target genome assembly
for the human samples was GRCh37/UCSC-hg19 and Tophat was additionally
supplied with a gene model (using its ‘-GTF’ parameter) with data from the hg19
UCSC KnownGenes track65. For multiple-mapped fragments, only the highest
scoring mapping determined by Bowtie2 was kept. Only mappings with both read
ends aligned were kept. Potential PCR duplicates (mappings of more than one
fragment with identical positions for both read ends) were removed with the
samtools ‘rmdup’66 function, keeping only one of any potential duplicates.
The final set of mapped paired-end reads for a sample were converted to
position-by-position coverage of the relevant genome assembly using the bedtools
‘genomeCoverageBed’ function67. To determine the count of fragments mapping to
a gene, the position-by-position coverage was summed over the exonic positions of
the gene. This gene total coverage was divided by a factor of 100, to account for the
100-bp of coverage induced by each mapped paired-end fragment (50 bp from each
end) and rounded to an integer. This was calculated for each gene in the UCSC
Known Gene set. For input to DESeq68, all genes with non-zero counts in any
sample were considered. Two replicates of each sample were combined per
the DESeq methodology. SpliceTrap69 was used to analyse splicing changes with
the parameters j15, ch0.1, ir0.1 and IRMyes.

For mapping of reads that are chimeric to the reference genome70, to identify
the translocation breakpoint on chr6 we used STAR-Fusion https://github.com/
STAR-Fusion/. Non-splice junction reads from the macrophage samples that
mapped from the QKI gene on chr6 to any location on chr5 were inspected and
several were found, which mapped from QKI intron 4 to a site that is strongly
transcribed from chr5 in the patient but not at all in her sibling.

Genome-wide computational analysis for RNA motifs. Human mature mRNA
sequences were downloaded from UCSC RefSeq database (hg19). Computational
screening was performed for the QRE motif, UACUAAY N1-20 UAAY, and
counts calculated for the longest annotated transcript. After cross-referencing these
transcripts with either the transcripts annotated on the microarray or the RNA-seq,
we annotated the number or QREs in the Supplementary Data. Transcripts of
which we were unable to assess whether they contain one or more QREs, we
annotated as NA and these were excluded from analysis to generate the CDF plots
in Figs 3j and 5h. To generate the Venn diagrams and scatterplots for the RNA-seq
of monocytes and macrophages (Fig. 3g,i), a ±1.5-fold change cutoff was applied
together with a minimal expression cutoff of patientþ sibling Z1 CPM, to avoid
artificially large fold changes due to very low expression values. To generate the
Venn diagrams and scatterplots for the THP-1-derived expression data (Fig. 5e, g),
we applied a ±1.5-fold change cutoff and applied a DESeq-derived q-value cutoff
of qr0.05.

MISO analysis. Mixture of isoforms (MISO) analysis was used to assess, quantify
and visualize alternative transcripts based on RNA-seq data. Sequences obtained
from RNA-seq were aligned using TopHat2 to the human genome v19 tran-
scriptome (annotation-set kindly provided by Dr Christopher Burge, MIT,
Cambridge, USA). Using the alignment files (BAM files), MISO analyses was
performed on our RNA-seq paired-end sequencing data to identify alternative
splicing events, as previously described71. Second, an annotation set containing only
exons surrounding the splicing event were included in the analysis to generate
a more in-depth analysis of select splicing events. A pairwise comparison was
performed using the sibling and patient monocyte and macrophage on both the full
and selected annotation sets. Additional visualization was performed using the
sashimi plot subpackage from MISO, while modifications in the plotting procedure
were made to allow visualization of supplementary annotation tracks including
ACTAA and QKI PAR-CLIP sites, along with RefSeq transcripts that define the
event at (https://github.com/wyleung/rnaveer).

Western blot analysis. Polyacrylamide gel electrophoresis was used to resolve
proteins from cellular lysates harvested in RIPA buffer. Protein determinations
(BCA) were performed to ensure equal loading of protein on a per-sample basis.
QKI-5, -6 and -7 were detected using primary mouse monoclonal antibodies that
target pan-QKI (1:1,000, N73/168; UC Davis/NIH NeuroMab Facility), QKI-5
(1:1,000, N195A/16; UC Davis/NIH NeuroMab Facility), QKI-6 (1:1,000,
N182/17; UC Davis/NIH NeuroMab Facility) or QKI-7 (1:1,000, N183/15.1;
UC Davis/NIH NeuroMab Facility), or polyclonal antibodies targeting QKI-5
(1:1,000, AB9904; Millipore, Amsterdam, The Netherlands), QKI-6 (1:2,000,
AB9906; Millipore) and QKI-7 (1:2,000, AB9908; Millipore). For loading
references, rabbit polyclonal antibodies were used to detect b-actin or Histone H3
(both 1:4,000; Abcam, Cambridge, UK). All gels were run and blotted with
Bio-Rad TGX pre-cast gels and blotted on nitrocellulose 0.2 mm using the
Bio-Rad TurboBlot system (Bio-Rad Laboratories). Full blots are shown in
Supplementary Fig. 7.

Quantification of pre-mRNA expression levels by PCR. RNA was harvested
from monocytes and macrophages using Trizol reagent (Thermo Fisher
Scientific). Standard mouse and human cDNA was made using oligo-dT primers
(Invitrogen), whereas cDNA for alternative splicing studies was synthesized using
random primers (Invitrogen). Primer sets designed for specific pre-mRNA

amplification by quantitative RT–PCR analysis are provided in Supplementary
Table 1. Quantitative RT–PCR analysis for designated mRNA products was
performed using SYBR Green master mix (Bio-Rad, Veenendaal, The
Netherlands). For optimal resolution of pre-mRNA splicing patterns, samples
were run on an Agilent 2100 bioanalyser (Agilent), with full images provided in
Supplementary Figs 8–10.

Statistics. For all experiments, N defined the number of biological replicates. All
in vitro and in vivo results were analysed using GraphPad software with either a
Student’s t-test or analysis of variance (with a Bonferonni post test being used). All
results are expressed as mean±s.e.m. Differences in P-valueso0.05 or o0.01 were
considered significant and indicated as follows: *Po0.05 or **Po0.01, respectively.

Ethics. Informed consent was obtained for all patient-derived samples. Approval
for these studies was provided by the relevant medical ethics committees, namely
Maastricht University Medical Center, The Netherlands (Professor Dr E.A.L.
Biessen), for immunohistochemical studies, and Leuven University Hospital,
Belgium (Professor Dr H. Van Esch), for the QKI haploinsufficient and
control materials. All mouse experiments were approved by the regulatory
authorities of the Leiden University and were in compliance with the Dutch
Government Guidelines.

References
1. Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development,

heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27,
669–692 (2009).

2. Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in
blood. Blood 116, e74–e80 (2010).

3. van Zonneveld, A. J., de Boer, H. C., van der Veer, E. P. & Rabelink, T. J.
Inflammation, vascular injury and repair in rheumatoid arthritis. Ann. Rheum.
Dis. 69(Suppl 1): i57–i60 (2010).

4. Schwarzmaier, D., Foell, D., Weinhage, T., Varga, G. & Dabritz, J. Peripheral
monocyte functions and activation in patients with quiescent Crohn’s disease.
PLoS ONE. 8, e62761 (2013).

5. Libby, P., Nahrendorf, M., Pittet, M. J. & Swirski, F. K. Diversity of denizens of
the atherosclerotic plaque: not all monocytes are created equal. Circulation 117,
3168–3170 (2008).

6. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340,
115–126 (1999).

7. Hilgendorf, I., Swirski, F. K. & Robbins, C. S. Monocyte fate in atherosclerosis.
Arterioscler. Thromb. Vasc. Biol. 35, 272–279 (2015).

8. Zhang, D. E., Hetherington, C. J., Chen, H. M. & Tenen, D. G. The
macrophage transcription factor PU.1 directs tissue-specific expression of the
macrophage colony-stimulating factor receptor. Mol. Cell Biol. 14, 373–381
(1994).

9. Coccia, E. M. et al. STAT1 activation during monocyte to macrophage
maturation: role of adhesion molecules. Int. Immunol. 11, 1075–1083
ð1999Þ:

10. Williams, S. C. et al. C/EBPepsilon is a myeloid-specific activator of cytokine,
chemokine, and macrophage-colony-stimulating factor receptor genes. J. Biol.
Chem. 273, 13493–13501 (1998).

11. Martinez, F. O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional
profiling of the human monocyte-to-macrophage differentiation and
polarization: new molecules and patterns of gene expression. J. Immunol. 177,
7303–7311 (2006).

12. Martinez, F. O. The transcriptome of human monocyte subsets begins to
emerge. J. Biol. 8, 99 (2009).

13. Lu, J. Y., Sadri, N. & Schneider, R. J. Endotoxic shock in AUF1 knockout mice
mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev.
20, 3174–3184 (2006).

14. Lu, Y. C. et al. ELAVL1 modulates transcriptome-wide miRNA binding in
murine macrophages. Cell Rep. 9, 2330–2343 (2014).

15. Eigsti, R. L., Sudan, B., Wilson, M. E. & Graff, J. W. Regulation of activation-
associated microRNA accumulation rates during monocyte-to-macrophage
differentiation. J. Biol. Chem. 289, 28433–28447 (2014).

16. Lin, H. S. et al. miR-199a-5p inhibits monocyte/macrophage differentiation by
targeting the activin A type 1B receptor gene and finally reducing C/EBPalpha
expression. J. Leukoc. Biol. 96, 1023–1035 (2014).

17. Kafasla, P., Karakasiliotis, I. & Kontoyiannis, D. L. Decoding the functions
of post-transcriptional regulators in the determination of inflammatory states:
focus on macrophage activation. Wiley. Interdiscip. Rev. Syst. Biol. Med. 4,
509–523 (2012).

18. Chenard, C. A. & Richard, S. New implications for the QUAKING
RNA binding protein in human disease. J. Neurosci. Res. 86, 233–242
ð2008Þ:

19. Fu, X. D. & Ares, Jr. M. Context-dependent control of alternative splicing by
RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10846

18 NATURE COMMUNICATIONS | 7:10846 | DOI: 10.1038/ncomms10846 | www.nature.com/naturecommunications

https://github.com/STAR-Fusion/
https://github.com/STAR-Fusion/
https://github.com/wyleung/rnaveer
http://www.nature.com/naturecommunications


20. Kafasla, P., Skliris, A. & Kontoyiannis, D. L. Post-transcriptional coordination
of immunological responses by RNA-binding proteins. Nat. Immunol. 15,
492–502 (2014).

21. Mukherjee, N., Lager, P. J., Friedersdorf, M. B., Thompson, M. A. & Keene, J. D.
Coordinated posttranscriptional mRNA population dynamics during T-cell
activation. Mol. Syst. Biol. 5, 288 (2009).

22. Turner, M. & Hodson, D. J. An emerging role of RNA-binding proteins as
multifunctional regulators of lymphocyte development and function. Adv.
Immunol. 115, 161–185 (2012).

23. van der Veer, E. P. et al. Quaking, an RNA-binding protein, is a critical
regulator of vascular smooth muscle cell phenotype. Circ. Res. 113, 1065–1075
(2013).

24. Hardy, R. J. et al. Neural cell type-specific expression of QKI proteins is altered
in quakingviable mutant mice. J. Neurosci. 16, 7941–7949 (1996).

25. Kondo, T. et al. Genomic organization and expression analysis of the mouse
qkI locus. Mamm. Genome 10, 662–669 (1999).

26. Pilotte, J., Larocque, D. & Richard, S. Nuclear translocation controlled by
alternatively spliced isoforms inactivates the QUAKING apoptotic inducer.
Genes Dev. 15, 845–858 (2001).

27. Zorn, A. M. et al. Remarkable sequence conservation of transcripts encoding
amphibian and mammalian homologues of quaking, a KH domain RNA-
binding protein. Gene 188, 199–206 (1997).

28. Chen, T., Damaj, B. B., Herrera, C., Lasko, P. & Richard, S. Self-association of
the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: role
of the KH domain. Mol. Cell Biol. 17, 5707–5718 (1997).

29. Corcoran, D. L. et al. PARalyzer: definition of RNA binding sites from
PAR-CLIP short-read sequence data. Genome Biol. 12, R79 (2011).

30. Galarneau, A. & Richard, S. Target RNA motif and target mRNAs of the
Quaking STAR protein. Nat. Struct. Mol. Biol. 12, 691–698 (2005).

31. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein
and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

32. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene
regulation. Nature 499, 172–177 (2013).

33. Teplova, M. et al. Structure-function studies of STAR family Quaking proteins
bound to their in vivo RNA target sites. Genes Dev. 27, 928–940 (2013).

34. Jiang, L., Saetre, P., Jazin, E. & Carlstrom, E. L. Haloperidol changes mRNA
expression of a QKI splice variant in human astrocytoma cells. BMC
Pharmacol. 9, 6 (2009).

35. Saetre, P. et al. Inflammation-related genes up-regulated in schizophrenia
brains. BMC Psychiatry 7, 46 (2007).

36. Brosseau, J. P. et al. Tumor microenvironment-associated modifications of
alternative splicing. RNA 20, 189–201 (2014).

37. Sidman, R. L., Dickie, M. M. & Appel, S. H. Mutant mice (Quaking and Jimpy)
with deficient myelination in the central nervous system. Science 144, 309–311
(1964).

38. Backx, L. et al. Haploinsufficiency of the gene Quaking (QKI) is associated
with the 6q terminal deletion syndrome. Am. J. Med. Genet. A 152A, 319–326
(2010).

39. Hall, M. P. et al. Quaking and PTB control overlapping splicing regulatory
networks during muscle cell differentiation. RNA 19, 627–638 (2013).

40. Wu, J. I., Reed, R. B., Grabowski, P. J. & Artzt, K. Function of quaking in
myelination: regulation of alternative splicing. Proc. Natl Acad. Sci. USA 99,
4233–4238 (2002).

41. Zong, F. Y. et al. The RNA-binding protein QKI suppresses cancer-associated
aberrant splicing. PLoS Genet. 10, e1004289 (2014).

42. Pastuszak, A. W. et al. An SF1 affinity model to identify branch point sequences
in human introns. Nucleic Acids Res. 39, 2344–2356 (2011).

43. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain
alternative RNA processing. Nature 456, 464–469 (2008).

44. Srinivasan, K. et al. Detection and measurement of alternative splicing using
splicing-sensitive microarrays. Methods 37, 345–359 (2005).

45. An, G. et al. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi
monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites
of atherosclerosis in mice. Circulation 117, 3227–3237 (2008).

46. Pacis, A., Nedelec, Y. & Barreiro, L. B. When genetics meets epigenetics:
deciphering the mechanisms controlling inter-individual variation in immune
responses to infection. Curr. Opin. Immunol. 29, 119–126 (2014).

47. Pham, T. H. et al. Dynamic epigenetic enhancer signatures reveal key
transcription factors associated with monocytic differentiation states. Blood
119, e161–e171 (2012).

48. Pham, T. H. et al. Mechanisms of in vivo binding site selection of the
hematopoietic master transcription factor PU.1. Nucleic Acids Res. 41,
6391–6402 (2013).

49. Feinberg, M. W. et al. The Kruppel-like factor KLF4 is a critical regulator of
monocyte differentiation. EMBO J. 26, 4138–4148 (2007).

50. Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth
muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21,
628–637 (2015).

51. Gertz, J. et al. Distinct properties of cell-type-specific and shared transcription
factor binding sites. Mol. Cell 52, 25–36 (2013).

52. Kuhlman, P. A., Hughes, C. A., Bennett, V. & Fowler, V. M. A new function for
adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin
filaments. J. Biol. Chem. 271, 7986–7991 (1996).

53. Chan, K. R. et al. Ligation of Fc gamma receptor IIB inhibits antibody-
dependent enhancement of dengue virus infection. Proc. Natl Acad. Sci. USA
108, 12479–12484 (2011).

54. Jirka, S. & Aartsma-Rus, A. An update on RNA-targeting therapies for
neuromuscular disorders. Curr. Opin. Neurol. 28, 515–521 (2015).

55. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15,
541–555 (2014).

56. Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874
(2011).

57. Lim, J. et al. A protein-protein interaction network for human inherited ataxias
and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006).

58. Dehghan, A. et al. Genome-wide association study for incident myocardial
infarction and coronary heart disease in prospective cohort studies: the CHARGE
consortium. PLoS ONE 11, e0144997 (2016).

59. van Eck, M. et al. Bone marrow transplantation in apolipoprotein E-deficient mice.
Effect of ApoE gene dosage on serum lipid concentrations, (beta)VLDL catabolism,
and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 17, 3117–3126 (1997).

60. Daigneault, M., Preston, J. A., Marriott, H. M., Whyte, M. K. & Dockrell, D. H.
The identification of markers of macrophage differentiation in PMA-stimulated
THP-1 cells and monocyte-derived macrophages. PLoS ONE 5, e8668 (2010).

61. Bot, I. et al. Serine protease inhibitor Serp-1 strongly impairs atherosclerotic
lesion formation and induces a stable plaque phenotype in ApoE-/-mice.
Circ. Res. 93, 464–471 (2003).

62. Sugnet, C. W. et al. Unusual intron conservation near tissue-regulated exons
found by splicing microarrays. PLoS. Comput. Biol. 2, e4 (2006).

63. Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel
fusion transcripts. Genome Biol. 12, R72 (2011).

64. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9, 357–359 (2012).

65. Hsu, F. et al. The UCSC known genes. Bioinformatics 22, 1036–1046 (2006).
66. Li, H. et al. The Sequence Alignment/Map format and SAMtools.

Bioinformatics 25, 2078–2079 (2009).
67. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics 26, 841–842 (2010).
68. Anders, S. & Huber, W. Differential expression analysis for sequence count

data. Genome Biol. 11, R106 (2010).
69. Wu, J. et al. SpliceTrap: a method to quantify alternative splicing under single

cellular conditions. Bioinformatics 27, 3010–3016 (2011).
70. Stransky, N., Cerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape of

kinase fusions in cancer. Nat. Commun. 5, 4846 (2014).
71. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA

sequencing experiments for identifying isoform regulation. Nat. Methods 7,
1009–1015 (2010).

Acknowledgements
For the studies described in this manuscript, we greatly appreciate the participation and
cooperation of the QKI haploinsufficient patient and her family members. R.G.d.B. and
E.P.v.d.V. were supported by Netherlands Institute for Regenerative Medicine research
grants (Grant No. FES0908). This research was also made possible by a private research
endowment to E.P.v.d.V. L.S., S.K., J.P.D. and M.A.J. were supported by US National
Institutes of Health grant GM040478 and W.S.F. was supported by training grants CIRM
TG2-01157 and NIH T32 GM008646. H.K. was supported by European Union Marie
Curie CIG grant (PTRCODE) and TUBITAK grant (113E159). We also gratefully
acknowledge Dr Christopher Burge and his laboratory at the Massachusetts Institute of
Technology, for assistance with the generation of sashimi plots from our RNA-seq data.
In addition, we acknowledge Dr Arnoud Sonneberg at the Netherlands Cancer Institute
for the in-depth discussions and integrin antibodies.

Author contributions
R.G.d.B., M.A.J., A.J.v.Z. and E.P.v.d.V. conceived the ideas and experiments within
the study. R.G.d.B. and E.P.v.d.V. performed the majority of the experiments detailed in
the study. L.S., S.K. and J.P.D. performed the RNA-Seq and splicing-sensitive microarray
studies, and analysed the data. J.P., H.C.d.B., A.S., J.M.v.G., J.M.G.J.D., A.O.K.,
P.H.J.v.d.Z., R.S., C.M.A.v.A, and I.B. assisted with experiments and analyses. R.G.d.B,
L.S., S.B., W.Y.L., S.M.K., J.P.D. and H.K. provided bioinformatics and statistical
assistance. H.V.E. provided access to the QKI haploinsufficient patient and sibling.
R.G.d.B., A.J.v.Z. and E.P.v.d.V. wrote and edited the manuscript, and prepared the
figures. J.M.v.G., W.S.F., C.v.K., J.W.J., H.V.E., T.J.R., E.A.L.B., M.A.J. and A.J.v.Z.
provided critical experimental commentary, discussion and assistance with manuscript
preparation and editing. T.J.R., E.A.L.B., M.A.J., A.J.v.Z. and E.P.v.d.V. provided funding
for the studies.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10846 ARTICLE

NATURE COMMUNICATIONS | 7:10846 | DOI: 10.1038/ncomms10846 | www.nature.com/naturecommunications 19

http://www.nature.com/naturecommunications


Additional information
Accession code: RNA sequencing and microarray data were deposited in NCBI’s Gene
Expression Omnibus (GEO) under accession codes GSE74979 (for RNA-seq data) and
GSE74887 (for the splicing-sensitive microarray data).

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: de Bruin, R. G. et al. Quaking promotes monocyte
differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing
and gene expression. Nat. Commun. 7:10846 doi: 10.1038/ncomms10846 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10846

20 NATURE COMMUNICATIONS | 7:10846 | DOI: 10.1038/ncomms10846 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Human atherosclerotic lesion macrophages express QKI
	A reduction in QKI decreases lesional macrophage burden
	QKI is induced on monocyte to macrophage differentiation

	Figure™1Quaking is expressed in macrophages within atherosclerotic lesions.(a) Pan-QKI mRNA expression levels in CD68+ macrophages of early and advanced atherosclerotic lesions isolated by laser-capture microdissection (n=4). Data expressed as meanPlusMin
	QKI haploinsufficiency perturbs macrophage differentiation

	Figure™2QKI is highly expressed in macrophages derived from PB monocytes.(a) mRNA expression levels of distinct QKI isoforms following negative selection and FACS sorting for blood-derived human monocyte subsets, namely classical (CD14++, CD16-), intermed
	QKI impacts transcript abundance in monocytes and macrophages
	QKI controls splicing in monocytes and macrophages

	Figure™3Characterization of monocyte and macrophage biology in a unique QKI haploinsufficient patient.(a) Schematic of chromosomal translocation event in the qkI haploinsufficient patient (Pat-QKI+sol-), reducing QKI expression to sim50percnt that of her 
	Figure™4QKI influences pre-mRNA splicing in naive PB monocytes and macrophages.(a) SpliceTrap assessment of the proximal ACUAA RNA motif enrichment in 50-bp windows upstream and downstream of alternatively spliced cassette exons (as compared with a backgr
	QKI regulates transcript abundance in THP-1 cells

	Figure™5QKI influences mRNA transcript abundance during differentiation of THP-1 monocyte-like cells to THP-1 macrophage-like cells.(a) mRNA expression of the QKI isoforms as compared with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in THP-1 ’monocyt
	QKI modifies pre-mRNA splicing patterns in THP-1 cells
	QKI targets monocyte activation and differentiation pathways
	QKI facilitates monocyte adhesion and migration
	QKI drives foam cell formation

	Figure™6QKI expression levels influence pre-mRNA splicing during THP-1-based monocyte-like to macrophage-like cell differentiation.(a) Schematic depicting detectable alternative splicing events with the splicing-sensitive microarray platform and number of
	Discussion
	Table 1 
	Figure™7QKI expression levels have an impact on monocyte adhesion as well as migration and differentiation.(a) Cumulative population doublings (y axis: CPDs) were counted to assess the effect of QKI reduction on cellular proliferation over time (x axis: d
	Methods
	Human immunohistochemistry studies
	BM transplantation

	Figure™8QKI regulates the expression of atherosclerosis-related mRNAs and impairs foam cell formation.(a) Quantitative RT-PCR (qRT-PCR) analysis of established atherosclerosis-related genes in wt of qkv-derived monocytes and macrophages. Gene expression i
	Lentiviral transduction of monocytes
	GapmeR design

	Figure™9Schematic depicting how QKI posttranscriptionally regulates monocyte to macrophage differentiation and atherosclerosis development.QKI mRNA expression increases in intermediate monocytes, reaching a peak in the non-classical monocyte (middle). Mon
	Monocyte subpopulation analysis
	Monocyte and macrophage culture
	In vitro perfusion assay
	Cellular migration assays
	Gene expression microarrays
	Splicing microarrays
	Word (5-mer) enrichment and positional mapping
	RNA-seq library preparation
	Mapping and analysis of RNA-seq data
	Genome-wide computational analysis for RNA motifs
	MISO analysis
	Western blot analysis
	Quantification of pre-mRNA expression levels by PCR
	Statistics
	Ethics

	AuffrayC.SiewekeM. H.GeissmannF.Blood monocytes: development, heterogeneity, and relationship with dendritic cellsAnnu. Rev. Immunol.276696922009Ziegler-HeitbrockL.Nomenclature of monocytes and dendritic cells in bloodBlood116e74e802010van ZonneveldA. J.d
	For the studies described in this manuscript, we greatly appreciate the participation and cooperation of the QKI haploinsufficient patient and her family members. R.G.d.B. and E.P.v.d.V. were supported by Netherlands Institute for Regenerative Medicine re
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




