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Liver hepatocellular carcinoma (HCC) remains a leading cause of cancer-related death. Poor understanding of the mechanisms
underlying HCC prevents early detection and leads to high mortality. We developed a random forest model that incorporates
copy-number variation, DNA methylation, transcription factor, and microRNA binding information as features to predict gene
expression in HCC. Our model achieved a highly significant correlation between predicted and measured expression of held-out
genes. Furthermore, we identified potential regulators of gene expression in HCC. Many of these regulators have been previously
found to be associated with cancer and are differentially expressed in HCC. We also evaluated our predicted target sets for these
regulators bymaking comparisonwith experimental results. Lastly, we found that the transcription factor E2F6, one of the candidate
regulators inferred by our model, is predictive of survival rate in HCC. Results of this study will provide directions for future
prospective studies in HCC.

1. Introduction

Liver hepatocellular carcinoma (HCC) is the third leading
cause of cancer-related mortality in the world. Furthermore,
HCC is one of the few cancer types whose incidence and
mortality rates are increasing worldwide. Despite this, HCC
is a relatively understudied cancer that lacks biomarkers for
prognosis and the regulatory factors involved in carcinogen-
esis remain uncharacterized [1]. As such, identification of the
regulatory pathways leading to cancer development is critical
for the development of efficient therapeutic strategies.

Cancer development is commonly associated with altered
gene expression. Changes in gene expression can be associ-
ated with copy-number variation (CNV) as well as with more
complex patterns of dysregulation in gene expression control.
Gene expression regulation can be grouped as transcrip-
tional and posttranscriptional regulation. Transcriptional
regulation is mainly controlled by binding of transcription
factors (TFs) to gene promoters to control transcription
rate. TFs can either activate or repress gene expression. The
methylation level of the promoter regions also affects the
transcription rate. Gene expression can also be controlled
after transcription. MicroRNAs (miRNAs) are an important

class of small RNAs acting in posttranscriptional regulation.
miRNAs bind to their sites in 3! untranslated regions (UTRs)
of target genes and repress their expression. Aberrations
in the functioning of TFs and miRNAs can lead to major
changes in gene expression.

The Cancer Genome Atlas (TCGA) has been profiling
hundreds of tumor samples at multiple molecular and reg-
ulatory layers including measurements of gene copy number,
DNA methylations, and mRNA and miRNA expression [2].
Encyclopedia of DNA Elements (ENCODE) is another large-
scale genomic project that aims to map the genome-wide
binding sites of TFs using ChIP-seq [3]. The availability
of these rich datasets provides opportunities to develop
integrative computational models to understand molecular
mechanisms of carcinogenesis.

Recently, Setty et al. proposed a lasso regularized regres-
sion model that incorporates copy-number variation, DNA
methylation levels, TF, and miRNA-mediated regulatory
effects to predict differential gene expression in glioblastoma
(GBM) [4].Their model identified regulators of GBM whose
activities are correlated with patient survival rate. Jacobsen
et al. utilized TCGA data to identify recurrent patterns of
miRNA-mRNA associations across 11 cancer types [5]. In this
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model, copy-number variation and DNA methylation level
are included but TF-based regulation is ignored. Ignoring TF-
based regulation might have led to overfitting and identifi-
cation of spurious miRNA-mRNA associations. RACER is a
statistical model that takes into account both transcriptional
and posttranscriptional regulation as well as copy-number
variation andDNAmethylationwithin a two-stage regression
framework to infer the candidate regulators in acute myeloid
leukemia [6]. Recently, Li et al. predicted differential gene
expression in lung cancer by using a comprehensive feature
set that represents epigenetic alterations but ignoring TF- and
miRNA-based regulation [7].

Here, we propose to predict gene expression in liver
hepatocellular carcinoma with a statistical model that incor-
porates copy-number variation and DNAmethylation as well
as the regulatory effects of TFs and miRNAs. Unlike many of
the previous studies that use linear regression, we used ran-
dom forests to represent the potential nonlinear relationships
between the regulatory factors and gene expression. Random
forests are also suitable for this problem as they can deal
with large number of correlated features and higher order
interactions. Furthermore, rather than predicting expression
of genes sample by sample independently, we aimed to predict
the variation of expression of a single gene across the tumor
samples to better capture the target relationships of TFs
and miRNAs. We achieved an average Spearman correlation
of 0.65 and determined the key regulators controlling gene
expression. Additionally, we inferred the target gene sets of
top regulators to better understand their activities and found
that one of these regulators, E2F6, is predictive of survival in
HCC.

2. Methods

2.1. Data Collection. We used TCGA data portal to compile
the liver hepatocellular carcinoma datasets onmRNA expres-
sion andmiRNA expression.We downloaded RNA-seq Level
3 datasets that correspond tomRNA expression. Similarly, we
downloaded Illumina HighSeq and Illumina GA datasets for
miRNA expression. We applied log2 transformation of RNA-
seq read counts. Additionally, we downloaded DNA copy-
number variation (GISTIC2-processed) and DNA methy-
lation levels from Firehose database (analyses: 01-11-2015)
[8]. We determined the methylation probe that shows the
largest negative correlation between “Beta-value” andmRNA
expression across all the samples and used its value as the
methylation level.

We defined the set of expressed TFs in liver by taking the
union of the expressed proteins in Human ProteomeMap [9]
and Human Protein Atlas [10] using the adult liver and liver
cancer cells, respectively. We downloaded the survival times
of liver hepatocellular carcinoma patients fromUCSC cancer
genomics browser.

2.2. Differential Expression Analysis with edgeR. We used an
existing method called edgeR to determine the genes that
are differentially expressed in cancer [11]. We prepared an
input matrix of RNA-seq read counts where rows are genes
and columns are paired tumor-normal samples.Wediscarded

the mRNAs that have less than 4 reads in more than 70%
of the samples. edgeR finds the genes that are differentially
expressed in tumor cells compared to normal cells, adjusting
for baseline differences between the patients. First, we used
the function calcNormFactors to adjust for varying sequenc-
ing depth and RNA composition effects across samples.This
function gives scaling factors which are then used to calculate
effective library sizes. Effective library size replaces the
original library size in all subsequent analyses. edgeRmodels
the RNA-seq read countswith negative binomial distribution.
The next step is to calculate the dispersion estimates by fitting
negative binomial models. Lastly, differential expression is
determined using the generalized linear model (GLM) likeli-
hood ratio test. We defined those genes with absolute log fold
changes greater than 1 and FDR-corrected ! values less than
0.05 to be differentially expressed. This selection resulted in
1220 upregulated genes and 2296 downregulated genes. We
repeated the same analysis for miRNAs that have more than
1 read count in more than 70% of the samples.

2.3. Mapping Binding Sites of Transcription Factors and
MicroRNAs. We defined the promoter regions as the 2000 nt
region upstream or downstream of the transcription start
sites based on Refseq annotation. We downloaded the posi-
tion frequency matrices (PFMs) of 382 TFs from JASPAR
database (JASPAR 2016 release [12]). After intersecting with
expressed TFs in liver, there remained 241 TFs. Next, we
scanned the promoter regions with these PFMs using the
FIMO tool from the MEME-suite [13]. We kept the sites
with ! values less than 1" − 4. Lastly, we formed a binary
matrix of TFs and genes where an entry of 1 indicates that
the corresponding TF has at least one binding site for the
corresponding gene. As an alternative, we downloaded ChIP-
seq datasets of 59 TFs in HepG2 cells from ENCODE project.
For each TF and gene, the corresponding element of the
matrix is 1 if the gene contains a ChIP-seq peak for that TF.
Otherwise, the element is labeled with 0.

We defined the miRNA target sites as conserved targets
from the recent TargetScan release (v7 [14]). This release
of TargetScan defines the human 3!UTRs by extending
Gencode annotations with 3!UTR isoforms and alternative
polyadenylation. To define the features that correspond to
miRNAs, we formed a binary matrix similar to the matrix we
formed for TFs. After intersection with the set of miRNAs
for which we have miRNA-seq data, we were left with 360
miRNAs.

In the end, we found that 360 of the 373 samples have
CNV, methylation, and miRNA-seq data. Also, we filtered
out the genes that have missing CNV or methylation data
and those genes with no TF or miRNA site. Our final dataset
consists of the expression data of 2689 genes across 360
samples.

2.4. Random Forest. Random forest is an ensemble learning
algorithm that consists of a collection of decision trees [15].
Each tree is fit independently with a set of bootstrapped
samples. In addition to the randomness involved with boot-
strapping, each node of a tree is split using the best among
a subset of variables randomly chosen at that node. In
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particular, at each node, $ candidate variables out of % total
number of variables are randomly selected.The final variable
to be used for splitting is determined based on a certain
cost function. Outputs from individual trees are weighted to
obtain the final outcome. One advantage of random forest
is the ability to estimate error rate during training. Namely,
at each bootstrap iteration, the tree that is trained with the
bootstrap sample is tested with the samples that are not in
the bootstrap sample. This test set is also called the “out-of-
bag” or OOB data. After learning all the trees, predictions
are aggregated to calculate the OOB estimate of error rate.
Additionally, variable importance values are estimated by
calculating the change in mean squared error in OOB data
when each predictor variable is permuted.

We used the R package randomForest to run our model.
We predicted the expression variation of a single gene across
the samples. In addition to CNV and methylation level, we
included TF andmiRNA-mediated regulation bymultiplying
the expression of TFs or miRNAs for each sample with the
binary binding information of TFs and miRNAs for that
gene. When predicting the expression variation of a gene, the
expression of a TF or miRNA is included as a feature if the
gene contains at least one binding site for that TF or miRNA.

We chose the parameters mtry (the number of variables
that is selected at each node) and ntrees (number of trees)
using the tuneRF function. In particular, we ran tuneRF with
a range of ntree values between 60 and 140.The best accuracy
was observed with mtry = 70 and ntree = 100. Therefore, we
ran our subsequent experiments with this parameter setting.

3. Results

3.1. Evaluation of the Random Forest Regression Model. We
used the random forest model to predict the expression
variation of differentially expressed genes across the tumor
samples. We used the built-in error estimation procedure
in the random forest model and calculated the Spearman
correlation of predicted gene expression with measured gene
expression in the held-out samples (i.e., OOB data). We
achieved an average correlation of 0.65 with the full model.
We repeated the same evaluation by excluding each feature
class one by one. Figure 1 compares the performance of the
full model with reduced models using a beanplot. Excluding
TFs resulted in the largest decrease of performance (avg.
correlation: 0.52). This confirms the critical roles of TFs in
regulating gene expression. We found that the second most
important factor type was methylation leading to an average
correlation of 0.62. Exclusion of CNV and miRNAs showed
relatively small but significant effect (avg. correlations are
0.645 and 0.648, resp.). The difference between full and
reduced models was significant for all the cases (Wilcoxon
sign-rank test ! value < 2.2"−16).We also tried replacing the
TF features with ENCODE-based definition of TF binding
sites. However, this resulted in lower performance possibly
due to the smaller number of included TFs (avg. correlation:
0.54).

3.2. Identification of Key Regulators. We utilized the variable
importance measures estimated by random forest model
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Figure 1: Comparison of the random forest models that exclude one
type of feature at a time.

to identify the most important features that predict gene
expression in our model. Namely, the variable importance
value of a feature corresponds to the change in mean squared
error when that feature is permuted. For each gene, we
obtained the importance values of all the features from the
random forest model. Then, for each gene, we calculated
the ranks of these importance values so that a smaller rank
corresponds to a more predictive feature. Lastly, we formed a
matrix where each row is a gene, each column is a feature, and
entries correspond to the ranks of the importance values. For
each feature, we averaged the ranks across all the genes to get
an estimate of the importance of this feature for the set of all
genes.Then, we sorted the features according to this average
rank value in increasing order. A toy example is shown in
Figure 2 where the table on the left contains the importance
values predicted by the random forest model and the table on
the right contains the ranks. In this toy example, Feature 4
would be identified as the most important regulator.

Table 1 shows the top features with lowest average ranks
(i.e., highest importance). We observe that DNAmethylation
and CNV rank as the most important features confirming
the significant effect of these factors on gene expression.The
most important features that followCNVandmethylation are
transcription factors. We also included the log fold changes
and the associated FDR-corrected ! values of our differential
expression analysis in this table. We found that many of these
transcription factors are significantly differentially expressed
in cancer.

Our top ranking feature, GLIS3, belongs to the same fam-
ily with another candidate regulator, GLIS2, and, together,
they have been found to be associated with liver fibrosis [16].
Similarly, the next ranked regulator TCF3 has been found to
regulate breast cancer cell differentiation and tumorigenicity
[17]. Additionally, previous literature has revealed that TCF3
and TCF4 are overexpressed in rectal cancer and they control
MYC expression in colorectal cells [18]. A previous study
identified ZEB1 as a key promoter of metastasis in pancreatic
and colorectal cancer cells [19]. E2F6 is another candidate
regulator that belongs to a family of proteins that play critical
roles in regulating cell proliferation and differentiation [20].

The topmiRNA ranks 115th in our feature importance list.
This result indicates that TFs have more widespread effects
on gene expression as our ranking metric favors features
with good importance values across many genes. This is in
accordancewith the fact that TFs can have dramatic effects on
gene expression by changing the transcription rate, whereas
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Feature 1 Feature 2 Feature 3 Feature 4
Gene 1 2.3 1.5 4.6 2.2
Gene 2 1.1 3.4 2.6 5.1
Gene 3 1.2 1.4 2.8 4.1

Feature 1 Feature 2 Feature 3 Feature 4
Gene 1 2 4 1 3
Gene 2 4 2 3 1
Gene 3 4 3 2 1
Avg. rank 3.3 3 2 1.6

Figure 2: A toy example illustrating the calculation of ranks from importance values.

Table 1: List of candidate regulators.

Regulator Avg. rank log FC ! value
Methylation 86 — —
CNV 171 — —
GLIS3 195 −0.61 0.008
TCF3 195 0.81 1.95" − 13
HIC2 199 0.48 3" − 03
ZEB1 205 −0.06 0.629
SPIB 206 −1.59 0.0019
GLIS2 208 0.52 0.05
TCF4 209 0.03 0.881
REST 209 −0.57 0.029
PKNOX2 212 −1.12 0.00017
GLI2 213 −1.33 0.0001
NFIA 214 −0.69 2.63" − 06
ID4 214 −1.24 5.69" − 05
MEF2A 215 −0.36 0.002
E2F6 216 0.15 0.187
ELF4 218 −0.25 0.28
ZBTB7C 223 −0.92 0.0002
TEAD4 223 0.62 0.02
PRDM1 224 −0.29 0.183
MEIS3 225 0.05 0.89
NR2F1 226 −0.82 0.0004
ZNF143 228 0.47 4.58" − 07
miR.766.3p 283 0.60 0.002
miR.335.3p 283 −0.17 0.39
miR.122.5p 284 −0.50 0.083

miRNAs fine-tune the expression. The last rows of Table 1
include the top 3miRNAs with lowest average ranks.

3.3. Target Gene Sets of Key Regulators. Weutilized thematrix
of importance ranks to also infer the targets of key regulators.
We hypothesized that a regulator should appear as an impor-
tant feature in predicting the expression of its target genes.
As such, for each feature, we sorted the ranks across all the
genes and defined the top of this list as predicted targets. To
evaluate the accuracy of our predicted target sets we compiled
the existing experimental data. In particular, we downloaded
knockdown datasets for 59 TFs in lymphoblastoid cell line
[21]. This dataset contains genome-wide measurements of
gene expression when a TF is knocked down. For each TF,
we sorted the genes according to ! values calculated with
likelihood ratio test comparing the knockdown samples to

the controls. We then calculated the overlap between the top
500 targets inferred by our model with the 500 genes that
have the lowest ! values indicating a significant fold change
between knockdown and control samples. We repeated the
same analysis with previously published transfection data for
miR-122 [14]. Table 2 lists the results of this overlap analysis.
We found that on average 30% of our predicted target set
overlaps with experimentally defined target set indicating the
success of our model. In particular, E2F6 target set shows the
largest overlap (165/500).

To further evaluate the predicted targets of candidate
regulators, we performed a literature search to compile
the known targets of some of the TFs in Table 2. Our
literature search revealed that TCF3 interacts with the tumor
suppressor CDKN2A in human fibroblast cells [22]. Indeed,
CDKN2A is one of the TCF3 targets that we predicted with
the random forestmodel and it also appears in the overlap tar-
get list for TCF3. Additionally, Ulgiati andHolers used EMSA
method and identified that CR2 promoter activity is critically
controlled by TCF3 [23]. Interestingly, CR2 appears in our
predicted target list but not in the list of targets determined
by the knockdown dataset. We observed a similar result for
the TF ZEB1. A previous study showed that ZEB1 suppresses
the expression of CDH13 (T-cadherin) in gallbladder cancer
cells [24]. CDH13 is one of the predicted targets of ZEB1;
however, it is not identified by the knockdown dataset. Xu et
al. performed ChIP-chip analysis of E2F family in 5 different
cell types (Ntera2, MCF10A, MCF7, HeLa, and GM06990)
and identified the top ranking promoters (i.e. 434 targets)
[25]. Of these, 8 genes are in the overlapping set of targets
and 33 genes are in our set of predicted targets. Lastly, for
REST, we downloaded the list of putative targets identified
by ChIP-seq method in HepG2 cells [26] and found that 126
of them are also predicted by our model and 11 of them are in
the overlapping set of targets. Altogether, these results further
confirm the accuracy of our predicted targets.

We also checked whether the target sets of candidate
regulators are enriched for gene ontology categories.We used
the GOrilla tool [22] with our ranked target gene sets to
identify the enriched GO biological process (BP) terms. The
second and third columns of Table 2 show the enriched GO
terms and! values corrected formultiple testing, respectively.
We only included the top enriched GO terms in this table.
This analysis revealed that activities of TCF3 and E2F6
are associated with cell cycle process indicating a potential
function in cancer development.

3.4. Survival Analysis. We used the R package survival to
performKaplan-Meier analysis.We chose themedian expres-
sion value (across the tumor samples) as the cutoff. This



BioMed Research International 5

Table 2: Analysis of predicted target sets for candidate regulators.

Regulator Target overlap Enriched GO terms Enrich. ! value
TCF3 140 Cell cycle process 3.7" − 08
ZEB1 126 — —
SPIB 146 Immune system process 7" − 13
TCF4 138 Extracellular matrix organization 2.1" − 03
REST 143 — —
MEF2A 155 — —
E2F6 165 Cell cycle process 3.5" − 22
PRDM1 142 Immune system process 4.5" − 29
NR2F1 135 — —
ZNF143 158 Chromosome segregation 4" − 03
miR.122.5p 169 — —
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Figure 3: E2F6 expression is predictive of survival rate in HCC
patients.

analysis revealed that the expression of E2F6 predicts the
differences in survival time of HCC patients (log-rank test !
value 2"−04) (Figure 3).This result is in linewith our previous
finding that E2F6 is associated with cell cycle control. Further
experimental studies will be instrumental in characterizing
the molecular mechanisms behind the association of E2F6
with survival in HCC.

4. Conclusion

Understanding the gene regulatory mechanisms that lead
to aberrant gene expression in cancer is critical for the
identification of biomarkers and therapies. Here, we have
developed a random forest model that integrates various
genome-wide measurements including CNV, DNA methyla-
tion, and expression of TFs and miRNAs coupled with their
binding information. By excluding each feature type at a time,

we found that TFs show the greatest decrease in performance
when excluded. This is followed by CNV, methylation, and
miRNAs. We also inferred the potential candidate regulators
and their associated target sets in HCC using the importance
values output by the random forest model. We observed a
large overlap between our predicted target sets and targets
identified using transfection or knockdown experiments
confirming the accuracy of our model. An interesting future
step would be to distinguish between upregulated and down-
regulated targets. Lastly, we found that one of our predicted
candidate regulators, E2F6, is predictive of survival time in
HCC patients. To the best of our knowledge, this is the
first integrative model of multidimensional TCGA data for
HCC. Our results will be instrumental in further studies of
dysregulated gene expression control mechanisms in HCC.
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