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One of the key concepts employed in cancer driver gene identification is that of mutual
exclusivity (ME); a driver mutation is less likely to occur in case of an earlier mutation that
has common functionality in the same molecular pathway. Several ME tests have been
proposed recently, however the current protocols to evaluate ME tests have two main
limitations. Firstly the evaluations are mostly with respect to simulated data and
secondly the evaluation metrics lack a network-centric view. The latter is especially
crucial as the notion of common functionality can be achieved through searching for
interaction patterns in relevant networks. We propose a network-centric framework to
evaluate the pairwise significances found by statistical ME tests. It has three main
components. The first component consists of metrics employed in the network-centric
ME evaluations. Such metrics are designed so that network knowledge and the
reference set of known cancer genes are incorporated in ME evaluations under a
careful definition of proper control groups. The other two components are designed as
further mechanisms to avoid confounders inherent in ME detection on top of the
network-centric view. To this end, our second objective is to dissect the side effects
caused by mutation load artifacts where mutations driving tumor subtypes with low
mutation load might be incorrectly diagnosed as mutually exclusive. Finally, as part of
the third main component, the confounding issue stemming from the use of nonspecific
interaction networks generated as combinations of interactions from different tissues is
resolved through the creation and use of tissue-specific networks in the proposed
framework. The data, the source code and useful scripts are available at: https://github.
com/abu-compbio/NetCentric.

Keywords: mutual exclusivity, network-centric mutual exclusivity evaluation, cancer drivers, cancer genomics,
tumor mutation load

1 INTRODUCTION

Cancer is a disease caused mostly due to a gradual accumulation of somatic alterations that give rise
to pathway dysregulation through alterations in copy number, DNA methylation, gene expression,
and molecular function. An important challenge in cancer genomics is to distinguish driver
mutations from passenger mutations. The former are those determined to be causal for cancer
progression, whereas the latter are characterized as those not leading to any selective advantage.
Several computational methods have been proposed for the identification of cancer driver genes or
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driver modules of genes by integrating mutations data with
various other types of genetic data; see Dimitrakopoulos and
Beerenwinkel. (2017), Zhang and Zhang. (2018), Bailey et al.,
2018, Tokheim et al., 2016 for recent comprehensive evaluations
and surveys on the topic.

A phenomenon observed frequently in the data pertaining to
the alterations that the tumors acquire is mutual exclusivity (ME);
a driver mutation is less likely to occur in case of an earlier
mutation that has common functionality in the same molecular
pathway (Thomas et al., 2007; Yeang et al., 2008; Leiserson et al.,
2016; van de Haar et al., 2019). Therefore several driver gene or
module identification approaches employ ME detection as part of
their problem definitions and optimization goals (Babur et al.,
2015; Ciriello et al., 2012; Leiserson et al., 2013; Kim et al., 2015;
Ahmed et al., 2019; Baali et al., 2020). Such a central role in driver
gene and module identification has led to the design of many
different approaches for defining and computing mutual
exclusivity. Some of these approaches are based on
combinatorial definitions of mutual exclusivity (Vandin et al.,
2012; Leiserson et al., 2013; Sarto Basso et al., 2019; Ahmed et al.,
2019; Song et al., 2020; Baali et al., 2020). In most cases the
combinatorial definitions are incorporated and tested within a
driver gene or module identification framework, rather than as
stand-alone ME tests. On the other hand, the vast majority of the
ME detection approaches are based on statistical tests (Ciriello
et al., 2012; Szczurek and Beerenwinkel, 2014; Leiserson et al.,
2015; Constantinescu et al., 2015; Hua et al., 2016; Canisius et al.,
2016; Leiserson et al., 2016; Kim et al., 2017; Liu et al., 2020;
Zhang et al., 2020) and in most cases for such approaches the
specific goal is to provide ME significance results. Therefore the
focus of the proposed framework is the evaluation of the latter set
of approaches consisting of the statistical ME tests.

Among such approaches, MEMo builds a graph based on gene
similarities and extracts cliques from this graph. To determine
whether each clique has significant mutual exclusivity, it then
proposes a null model generated by randomly permuting the set
of genomic events, while preserving the overall distribution of
observed alterations across both genes and samples, and
introduces a Markov Chain Monte Carlo (MCMC) permutation
strategy based on random network generationmodels (Ciriello et al.,
2012). Szczurek and Beerenwinkel. (2014) propose a probabilistic,
generative model of mutual exclusivity, explicitly taking coverage,
impurity, and error rates into account. Based on such a model, they
provide a statistical test of mutual exclusivity by comparing its
likelihood to the null model that assumes independent gene
alterations. Mutex defines the alteration of two genes to be
mutually exclusive if their overlap in samples is significantly less
than expected by chance, where the statistical significance of the
overlaps are calculated using a hypergeometric test with the
assumption of a uniform alteration frequency among samples
(Constantinescu et al., 2015). This may not always be the case as
inmany data sources there are hyper-mutated samples. The problem
is resolved partially by simply excluding such samples from the
analysis. CoMEt (Leiserson et al., 2015) on the other hand provides
an exact statistical test for mutual exclusivity conditional on the
observed frequency of each alteration with the goal of introducing
less bias towards high frequency alterations. Based on this it provides

a tail enumeration procedure to compute the exact test, as well as a
binomial approximation. DISCOVER provides a statistical
independence test that makes no assumption of identical gene
alteration probabilities across tumors (Canisius et al., 2016). The
alteration probabilities are estimated by solving a constrained
optimization problem guaranteeing the probabilities are
consistent with both the observed number of alterations per gene
and the observed number of alterations per tumor. The tumor-
specific gene alteration probabilities are then used to compute the
probability of concurrent alterations which in turn are used to decide
whether the number of tumors altered in both genes deviates from
the expectation through an analytical test based on the Poisson-
binomial distribution. WeXT provides a weighted exact test that
conditions simultaneously on the number of samples with a
mutation and the per-event, per-sample mutation probabilities
(Leiserson et al., 2016). A recursive formulation to compute
p-values for this weighted test exactly and a saddle-point
approximation of the test are proposed. WeSMe provides a
permutation-based test and an approximation of significance
through a weighted sampling technique that enables further
improvements in running time spent for sampling and a way to
obtain a better precision without increasing the computational time
significantly (Kim et al., 2017). Mina et al. propose the SELECT
method which uses a weighted version of mutual information to
identify significant mutual exclusivity or co-occurrence patterns
where significance is estimated by comparing against patterns
observed in random permutations of the data (Mina et al., 2017).
Two recently suggested ME tests are FSME (Zhang et al., 2020) and
MEScan (Liu et al., 2020). The former proposes a seed-and-extend
strategy to alleviate the computational cost of a permutation-based
test. The seed pairs are constructed by a combinatorial formulation
incorporating both ME and the coverage of the pair. The seeds are
then grown with new genes by employing an independence test.
MESCan provides a test statistic that incorporates a patient and
gene-specific background mutation rate in the calculation to adjust
for the background noise, and that includes a gene-specific weight to
down-weigh genes with high mutation rates. Such a statistic is then
employed in an MCMC algorithm followed by a false discovery rate
control.

We propose a network-centric framework to evaluate the
pairwise significances found by statistical ME tests. It is
important to make a distinction between the network-centric
view of the current study and that of the previous studies
employing both network data and the concept of ME (Ciriello
et al., 2012; Leiserson et al., 2013; Kim et al., 2015; Ahmed et al.,
2019; Baali et al., 2020). The latter are network-centric in the
sense that the proposed ME tests are applied on interacting pairs
or subnetworks as part of a more general goal of identifying
cancer driver genes/modules. Thus due to the nature of the set
objectives their evaluations focus on the success of output genes/
modules matching reference cancer-related drivers/pathways.
The proposed study takes on an approach in the opposite
direction; we assume the interaction network and the reference
cancer-related drivers to be inputs to our framework which
evaluates the success of various ME tests. The focus of the
proposed framework is on pairwise significances since one of
the major application areas where ME tests are commonly
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employed is knowledge-based cancer driver identification where
pairwise ME significances are of major essence. In terms of the
general objectives our work is most similar to that of Deng et al.,
2017, where a framework for performance comparisons of
statistical ME detection approaches is proposed and executed
on six such tests. An important distinction is that the
performance analysis of Deng et al. is based on experiments
with simulated data and the framework does not suggest any
mechanism to avoid confounders inherent in ME detection. One
such confounder is due to the alterations specific to cancer
subtypes (Deng et al., 2017; van de Haar et al., 2019).
Alterations in different subtypes may be incorrectly diagnosed
with ME, although the alterations are not due to any natural root
causes of ME such as redundant functionality. Inspired by the
observation that mutual exclusivity is enriched among physically
interacting pairs of genes (Dao et al., 2017), our network-centric
view aims to recognize such false positives by constructing
reference sets based on known drivers gathered from
neighborhoods of interaction networks. Furthermore, inspired
by the mutation load confounding concept of van de Haar et al.,
2019, we extend our network-centric framework to dissect side
effects caused by mutation load artifacts; mutations that drive
tumor subtypes with low mutation load might be incorrectly
diagnosed as mutually exclusive. A possible drawback of the
proposed network-centric evaluation framework would be due to
the use of nonspecific interaction networks that are generated as
combinations of interactions from different tissues and are thus
suboptimal in resolving confounding issues of mutual exclusivity.
In order to detect whether there exists such discrepancies or to
limit their effect if they do, we therefore refine the network-
centric approach by designing further tests on tissue-specific
networks (TSN) we construct based on gene co-expression.

2 METHODS

The overall network-centric ME evaluations framework has three
main components. The first one consists of definitions of the
metrics employed in the network-centric ME evaluations. Such
metrics are designed so that network knowledge and the reference
set of known cancer genes are incorporated in ME evaluations
under a careful definition of proper control groups. The second
component detects whether the use of the interactome
information provides similar advantages in ME corrections of
pairwise mutual exclusivity findings as the subtype-stratification
idea suggested by van de Haar et al., 2019. Finally, the third
component extends our framework to incorporate tissue-specific
networks with the aim of reducing the possible side effects of
using nonspecific interaction networks.

2.1 Metrics for the Network-Centric Mutual
Exclusivity Evaluations
Assuming that cancer driver genes in the same pathway are more
likely to show mutually exclusive mutation profiles, we utilize the
interactome to devise a strategy for evaluating the ME methods
and the effects of the interactome information on quantifying

ME. Let G, C, T ,S, pt, c denote respectively the input Protein-
Protein Interaction (PPI) network, the employed cohort, the
statistical ME test undergoing the network-centric ME
evaluations, the golden standard reference gene set of known
cancer drivers, the p-value threshold for significance, and the type
of the control group to be employed. LetNS(gi) denote the set of
genes from S that are in the neighborhood of the node
corresponding to gene gi in the PPI network G. For a gene
gi ∈ S, corresponding to each neighbor gj ∈ NS(gi), we
randomly select a gene gr from a control group X c(gi), and
compute TPcur, FPcur, based on the − log-transformed p-values
pi,j and pi,r as computed by the ME test T . Here pi,j denotes the
significance of the mutual exclusivity of the pair gi, gj for gi ∈ S
and gj ∈ NS(gi), and pi,r denotes the significance of the mutual
exclusivity of the pair gi, gr for a random gene gr from the control
group. Based on the premise that cancer driver genes interacting
in the PPI network are likely to exhibit ME, a pair gi, gj belongs to
the set of True Positives if pi,j is significant and a pair gi, gr belongs
to the set of False Positives if pi,r is significant.

To obtain robust results, the selection of the random genes
from the control group is repeated robustness_iterations number
of times, which is set to 100 in all the evaluations, except for those
testing the robustness of the framework with respect to various
parameter settings. Finally the medians of these 100 instances are
summed over all genes gi ∈ S to provide the necessary statistics
TP, FP. Thus precision, sensitivity, and the F1 scores
are computed based on these statistics. Precision is calculated
as |TP|/(|TP| + |FP|). Sensitivity is calculated with the formula
|TP|/|P| where P corresponds to condition positives which are
defined as the gene pairs gi, gj ∈ S where gi, gj interact in G.

We note that limiting our focus solely on these conventionally
formed TP, FP classes may be misleading as each one considers
the significance of pi,j and pi,r individually. A more detailed
inspection with a simultaneous consideration of their values
could prove more insightful in certain cases since they both
involve a common gene gi. Towards this aim we introduce the
strict versions of these conventional classes. More specifically
TPstrict consists of gi, gj pairs where pi,j is significant not only with
respect to the given threshold but also as compared to the p-value
of the control pair gi, gr. Similarly FPstrict consists of the control
pairs gi, gr, where pi,r is more significant than both the threshold
value and pi,j. Based on these strict classes we can compute three
metrics: precisionstrict, sensitivitystrict, and F1strict. Precisionstrict is
defined as |TPstrict|/(|TPstrict| + |FPstrict|) and sensitivitystrict is
defined as |TPstrict|/|P|. Such a consideration is especially
convenient in reducing any potential bias inherent in genes
like TP53 which have large mutation frequencies almost
exclusively in tumors with small numbers of mutations; both
pi,j and pi,r are likely to be significant in such a scenario giving rise
to vagueness in the conventional F1 score. A comparison of
F1strict values based on the two statistics simultaneous by their
nature, TPstrict and FPstrict provides a more rigorous evaluation in
such cases.

For the network-centric ME evaluations we employ two
different definitions for the control groups. For the first one,
the control group X 1(gi) consists of genes in S that do not
interact with gi in the PPI network. For the second one, X 2(gi)
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consists of neighbors of gi in the PPI network that are not in S. In
the latter case only the genes gi ∈ S for which the number of
neighbors not in S is larger than or equal to the number of
neighbors in S are taken into account.

2.2 Network-Centric Mutual Exclusivity
Corrections in Relation to Mutation Load
Association
Some statistical mutual exclusivity tests are based on the
assumption that gene’s alterations across tumors are
identically distributed. Among the approaches considered in
this study Fisher’s Exact Test and MEGSA belong to this
category. However, it has been observed that the number of
alterations per tumor can vary quite considerably, even in tumors
of the same type; colorectal tumors with microsatellite stability
have a median of 66 non-synonymous mutations, but colorectal
tumors with microsatellite instability have a median of 777
mutations (Vogelstein et al., 2013; Leiserson et al., 2016). It
has been shown that under such settings the mutual
exclusivity tests relying on identical alteration probabilities
across tumors may lead to reduced sensitivity for mutual
exclusivity analysis (Canisius et al., 2016). The effects of
varying alteration probabilities on pairwise mutual exclusivity
calculations have been formalized within the context of the so-
called mutation load confounding (MLC) in a recent study by van
de Haar et al., 2019. MLC is a correlation between the number of
statistically significant mutual exclusivity findings and the
mutation load association (MLA) of a gene. MLA of a gene is
calculated by running a logistic regression where a gene’s binary
mutation status indicating whether the gene is mutated or not in a
tumor is used as the only feature to predict the mutation load of
that tumor. Mutation load is defined as the number of genes that
are mutated in a tumor. Once the coefficient of the feature is
obtained by fitting the logistic regression model, it is standardized
by dividing by the standard error to make it comparable across
the genes. This standardized coefficient value is defined as the
MLA value. Note that negative MLA values correspond to higher
mutation frequencies in tumors with lowmutation loads, whereas
positive values correspond to higher mutation frequencies in
tumors with high mutation loads. Strong negative correlations
between the MLA of a gene and the number of statistically
significant pairwise mutual exclusivities have been observed,
implicating the finding that the more negative a gene’s MLA,
the higher the number of other genes that show mutual
exclusivity with that particular gene (van de Haar et al., 2019).
However, such a negative correlation does not always imply true
ME since a gene that exclusively shows large mutation frequency
in tumors with low mutation loads, naturally has a better chance
of forming mutually exclusive pairs with other genes. Thus extra
sources of information are necessary to filter out the pairs with
true ME relations among a set of statistically significant pairwise
mutual exclusivities postulated by some exclusivity test. van de
Haar et al., 2019 make use of the subtype information for such a
purpose and show that MLC can be reduced by correcting via
tumor subtype stratification. Such a correction greatly reduces the
number of gene pairs reported to show mutual exclusivity,

especially for pairs that include genes with low MLA. A major
drawback is the absence of subtype information for many tumors.
As part of our network-centric ME framework, we suggest that
such a correction can be efficiently done with the interaction
network data, rather than or better yet on top of the subtype
information. For this purpose we calculate the correlation
between the number of statistically significant pairwise ME
findings and the MLA for two settings; one where pairwise
mutual exclusivities are sought between a gene in S and all
other genes in S, and the other where a gene in S is checked
against only its PPI neighbors that are in S. The computations of
the two settings are repeated with the subtype-stratified data as
well, to see the added value of the network-centric ME corrections
on top of the subtype-based corrections on statistically significant
pairwise MEs.

2.3 Network-Centric Mutual Exclusivity
Evaluations in Relation to Tissue-Specific
Networks
Rather than using a common nonspecific network for all the
cancer types, in this component of our evaluation framework we
employ TSN based on the tissue in which the tumor develops. To
construct the TSN for a particular tissue, we start with the original
PPI network and remove the edges between the pairs of genes that
are not co-expressed in the corresponding tissue. For this
purpose, we download RNA-seq datasets from GTEX portal
(GTEXConsortium, 2020). See Supplementary Table S49 for
the total number of available samples for each tissue. To
determine the co-expressed genes, we follow the procedure
described in Luck et al., 2020. For each pair of genes that have
an edge in the original PPI network, we identify the number of
samples where both genes have Transcripts Per Kilobase Million
(TPM) values ≥1. We then divide this number with the total
number of samples where either gene has a TPM value ≥1. The
resulting value is called the co-expression ratio. Gene pairs
interacting in the original network are included in the TSNcor

if the co-expression ratio is ≥ cor, for a given threshold cor.
In addition to applying the network-centric metrics

introduced in Section 3.1 on the constructed TSNs, we also
propose a more detailed evaluation in terms of ROC analysis
based on tissue-specificity. For this purpose, we define the gene
pairs with co-expression ratio value of 1 as tissue-specific gene
pairs. Similarly, the gene pairs with co-expression ratio values
≤0.5 are called non-tissue-specific gene pairs. To test whether a
specific ME test identifies stronger mutual exclusivities for the
tissue-specific gene pairs in S, we rank the gene pairs in S in
increasing order of p-values. To construct the control group, we
rank the same number of random samples of gene pairs not in S
with respect to the p-values making sure that the sizes of the
positive (or negative) sets of gene pairs not in S are exactly the
same as those that are found for the gene pairs in S. For both gene
pairs in S and gene pairs not in S, the set of positives consists of
the tissue-specific gene pairs, whereas non-tissue-specific gene
pairs are labelled as negatives. We then compute the True Positive
Rate (TPR) and the False Positive Rate (FPR) for each case. Note
that for robustness considerations the control group
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computations are repeated 100 times and the median TPR and
FPR values are reported.

3 RESULTS

3.1 Input Data and Parameter Settings
The somatic mutation data from TCGA was preprocessed and
provided by van de Haar et al., 2019. The 8 different cancer types
and their corresponding tumor samples within the dataset is as
follows: BLCA (411), BRCA (1026), COADREAD (498), LUAD
(568), LUSC (485), SKCM (468), STAD (438) and UCEC (531).
The preprocessing step involves the removal of all mutations with
“variant_classification” of “Silent,” “3’UTR,” “Intron,” “5’UTR,”
“RNA,” “3’Flank” and “5’Flank” from the TCGA data. The input
data is then further filtered by mutation frequency threshold, t, to
include genes with > t mutations across the cohort. More
specifically, with t � 20 we include the genes that are mutated
in more than 20 samples within the cancer type under study.
Regarding subtypes, we download subtype information for BRCA
from the cBioPortal (Cerami et al., 2012; Gao et al., 2013) and the
CMS stratification for COADREAD from (Guinney et al., 2015).
We use the COSMIC Cancer Gene Census database to compile
the set of known cancer genes (Sondka et al., 2018).

For the results presented in the main document we employ the
IntAct PPI network as it is a comprehensive and well-
characterized database (Orchard et al., 2014). As a
preprocessing step, we remove duplicate edges and edges
below the confidence threshold of 0.35 from the network. The
final network contains 15,079 nodes and 103,520 edges. For the
gene expression data employed in the construction of TSNs, we
download RNA-Seq data from the Genotype-Tissue Expression
(GTEx) portal (GTEXConsortium, 2020) (05-06-2017).

For the comparative evaluations of our network-centric
framework described in the previous section, we choose six
popular statistical mutual exclusivity methods: DISCOVER
(Canisius et al., 2016), DISCOVER Strat (Canisius et al., 2016;
van de Haar et al., 2019), Fisher’s Exact Test, WeXT (Leiserson
et al., 2016), MEMo (Ciriello et al., 2012) and MEGSA (Hua et al.,
2016). Among these, MEMo and MEGSA are originally designed
to output p-values for a set of genes with size > 2. For MEMo, we
re-implement the first part of the algorithm where pairwise ME
p-values are estimated. We use Q � 100 and N � 10, 000 as
suggested by the original paper (Ciriello et al., 2012). ForMEGSA,
pairwise ME p-values are calculated by applying chi-square
cumulative probability less than or equal to the value of the

log likelihood calculated by the funestimate function. With
regards to the parameter settings of our proposed framework,
we employ the values of 5 and 20 for t.

3.2 Mutual Exclusivity Evaluations Based on
Defined Metrics
Table 1 and 2 show the results of evaluating the 6 ME detection
methods on COADREAD data where t � 20 and we use the data
from 498 patients for which subtype information is available. We
useX 1 andX 2 as the control group in Table 1 and 2, respectively.
We first discuss the results of X 1. We observe that DISCOVER
Strat gives the highest precision and precisionstrict values. The
ranking of the other methods from best to worst in terms of
precision or precisionstrict is as follows: WeXT, DISCOVER,
MEMo, MEGSA and Fisher’s Exact Test. A comparison of the
precision and precisionstrict values distinguishes two groups of
ME methods; for DISCOVER, DISCOVER Strat, Fisher’s Exact
Test, and WexT the precisionstrict values are greater than or equal
to the precision values, whereas the exact opposite is observed for
MEGSA and MEMo. This suggests that the performance of the
methods in the latter group gets worse when random control gene
pair is considered simultaneously in the precision calculation,
that is precisionstrict. Compared to the precision, we observe much
larger differences among the sensitivity or the sensitivitystrict
values output by the employed methods. We can group the
methods into two where the first group contains WeXT,
MEMo and DISCOVER, and the second group contains the
rest of the methods. The first group of methods give much
larger sensitivity or sensitivitystrict values than the second. For
instance, the sensitivity value obtained with WeXT is an order of
magnitude larger than that of Fisher’s Exact Test. This also shows
that the second group of methods are more conservative than the
first group of methods. WeXT is the least conservative approach
based on its high sensitivity value. Even though WexT predicts
many significant p-values, it still has a competitive precisionstrict
value which is slightly lower than the maximum observed value
(0.725 vs 0.727). Accordingly, WeXT obtains the best F1 score
and F1strict score which is followed by MEMo and DISCOVER.
The remaining three methods give much smaller F1 scores and
they rank as follows from highest to lowest: MEGSA, DISCOVER
Strat and Fisher’s Exact Test. Comparing the conventional F1
score with the F1strict score of each ME method, the largest
difference is observed for MEMo indicating that the
consideration of the random pair as a control affects its
performance dramatically. Another interesting observation is

TABLE 1 | Results of network-centric ME evaluation framework with control group X1 COADREAD t20 (498 samples, 196 CGC-CGC pairs).

Method Precision Sensitivity F1 Score Precisionstrict Sensitivitystrict F1 Scorestrict

DISCOVER 0.661 0.220 0.331 0.708 0.183 0.291
DISCOVER Strat 0.727 0.041 0.078 0.727 0.041 0.078
Fisher’s Exact Test 0.500 0.031 0.058 0.500 0.031 0.058
MEGSA 0.611 0.056 0.103 0.588 0.051 0.094
MEMO 0.658 0.329 0.439 0.647 0.237 0.347
WExT 0.676 0.403 0.505 0.725 0.329 0.453
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the lower performance of DISCOVER Strat compared to
DISCOVER which suggests that the use of subtype
information is not useful for COADREAD. Table 2 shows the
results where X 2 is used as the control group. Since X 2(gi) is
defined as the non-CGC neighbors of gi in the PPI network, we
can only consider the CGC genes that have more non-CGC
neighbors than CGC neighbors. As such, the number of pairs
included in this analysis is much smaller than that of Table 1 (107
vs 196). The ranking of the methods in Table 2 with respect to F1
score and sensitivity remain the same as Table 1. However, there
are differences in the ranking with respect to other metrics. For
instance, WeXT ranks best in terms of precision whereas the best
ranking method in Table 1, DISCOVER Strat, ranks the fifth.
Compared to Table 1, the precision values of all the methods are
smaller in Table 2. We see the opposite trend for sensitivity
values. These changes are in parallel with the increase in percent
significant p-values output by the methods. For instance, the
percentage of significant p-values output by DISCOVER is 12% in
Table 1 and 18% in Table 2. We also observe differences between
the conventional and the strict versions of the employed metrics.
WeXT and DISCOVER have increased precisionstrict values
compared to precision whereas we observe the opposite trend
for the rest of the methods. Additionally, the ranking of the
methods with respect to F1 score and F1strict score is different.
Namely, MEMo’s ranking decreases from second highest to third
highest when we switch from F1 score to F1strict score.
Accordingly, DISCOVER’s ranking improves from third
highest to second highest based on F1 score. This increases

the confidence of DISCOVER results as F1strict requires a
stricter definition of true and false positives. Supplementary
Table S1 shows the results with X 1 control group and t � 20
filtering for the other cancer types. A detailed discussion of these
results are available in the Supplementary Material.

Table 3 and 4 show the COADREAD results of t � 5 setting
with c � X1 and c � X2, respectively. Using a lower value for t
increases the number of gene pairs tested in our analysis. When
we compare these results with the results we obtained when t �
20, we observe few differences. Though the number of tested gene
pairs is larger, the percentage of significant p-values obtained by
the methods decreases. For instance, the percentage of significant
p-values output by WeXT for COADREAD data decreases from
42 to 14% when t is changed from 20 to 5. This is likely related to
the larger inclusion of low mutation frequency genes when t � 5.
An interesting observation for t � 5 results is the decrease in
DISCOVER Strat’s performance. For COADREAD, DISCOVER
Strat’s precision and precisionstrict value is the highest for t � 20
when X 1 is used as the control group. However, when t � 5, we
observe that it ranks after WeXT and DISCOVER in terms of
precision/precisionstrict value. Similarly, for BRCA dataset,
DISCOVER Strat ranks after WeXT for both control groups
X 1 and X 2 (Supplementary Table S25B, Supplementary Table
S37B).

Lastly, we investigate the robustness of our results with respect
to robustness_iterations value, the p-value significance threshold
value, the reference gene set and the employed PPI network. The
results together with a discussion of these results are available in

TABLE 2 | Results of network-centric ME evaluation framework with control group X2 COADREAD t20 (498 samples, 107 CGC-CGC pairs).

Method Precision Sensitivity F1 Score Precisionstrict Sensitivitystrict F1 Scorestrict

DISCOVER 0.537 0.276 0.365 0.579 0.210 0.308
DISCOVER Strat 0.455 0.048 0.086 0.400 0.038 0.069
Fisher’s Exact Test 0.444 0.038 0.069 0.375 0.028 0.052
MEGSA 0.571 0.075 0.133 0.538 0.066 0.118
MEMO 0.566 0.388 0.460 0.495 0.215 0.300
WExT 0.575 0.438 0.497 0.596 0.295 0.395

TABLE 3 | Results of network-centric ME evaluation framework with control group X1 COADREAD t5 (498 samples, 1748 CGC-CGC pairs).

Method Precision Sensitivity F1 Score Precisionstrict Sensitivitystrict F1 Scorestrict

DISCOVER 0.647 0.052 0.096 0.658 0.046 0.086
DISCOVER Strat 0.618 0.012 0.024 0.618 0.012 0.024
Fisher’s Exact Test 0.583 0.008 0.016 0.565 0.007 0.014
WExT 0.645 0.121 0.203 0.668 0.102 0.177

TABLE 4 | Results of network-centric ME evaluation framework with control group X2 COADREAD t5 (498 samples, 1625 CGC-CGC pairs).

Method Precision Sensitivity F1 Score Precisionstrict Sensitivitystrict F1 Scorestrict

DISCOVER 0.721 0.052 0.097 0.746 0.048 0.090
DISCOVER Strat 0.641 0.013 0.025 0.641 0.013 0.025
Fisher’s Exact Test 0.619 0.008 0.016 0.619 0.008 0.016
WExT 0.670 0.118 0.200 0.712 0.103 0.180
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Supplementary Table S2-S47. As a summary, our conclusions
remain the same in these different settings and the largest
differences are observed when the employed PPI network is
changed.

3.3 Mutual Exclusivity Evaluations Based on
Corrections via Mutation Load Association
Having compared theME tests with respect to our novel network-
centric evaluation framework, we now assess whether including
network knowledge reduces the mutation load confounding
(MLC) problem introduced by van de Haar et al., 2019. van
de Haar et al. identified a strong negative correlation between the
MLAs of genes and their percent significant findings in mutual
exclusivity tests. In van de Haar et al., 2019, these statistics are
computed for a set of 341 genes from an established cancer gene

panel (Cheng et al., 2015) where, for each gene, mutual exclusivity
tests are performed with all the other genes in the panel. Here, we
first perform a similar analysis where we use the COSMIC CGC
database (Forbes et al., 2017) to define the reference cancer gene
set as it is more comprehensive and up to date.

Figures 1A shows the MLA of the reference cancer genes vs
the percent significant findings in mutual exclusivity tests
performed with DISCOVER for the TCGA COADREAD
cohort (498 tumors). We observe a strong negative correlation
between MLA values and percent significant findings in mutual
exclusivity tests (Pearson correlation -0.88, p-value 4.0e − 25)
similar to van de Haar et al., 2019. In Figures 1B, we take into
account the PPI information to calculate percent significant
findings. Namely, for each CGC gene, we perform mutual
exclusivity tests only with its PPI neighbors that are also in
CGC. Note that CGC genes which do not have any CGC

FIGURE 1 | Comparison of mutual exclusivity results of DISCOVER and DISCOVER Strat on TCGA COADREAD cohort (498 samples) (A) The scatterplot of
percentage significance of ME runs (p-value<0.05) of DISCOVER on COADREAD data where tests are performed between a CGC gene and a random subset of other
CGC genes so that ME of a CGC gene of interest is checked with same sized group of genes in both A and B. (B) The scatter plot of percentage significance of ME runs of
DISCOVER where tests are performed between a CGC gene and its PPI neighbors that are in CGC (red) compared with (A) in gray. (C) The scatterplot of
percentage significance of mutual exclusivity runs of DISCOVER Strat where tests are performed between a CGC gene and a random subset of other CGC genes (blue)
so that ME of a CGC gene of interest is checkedwith same sized group of genes in both C and D, results from (A) are shown in gray for comparison. (D) The scatterplot of
percentage significance of mutual exclusivity runs of DISCOVER Strat where tests are performed between a CGC gene and its PPI neighbors that are in CGC (red)
compared with (C) in blue.
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neighbors are excluded from this analysis. To make a fair
comparison between Figures 1A,B, only the CGC genes that
have CGC neighbors are shown in Figures 1A. We also ensure
that the mutual exclusivity of a gene of interest is checked with
same sized group of genes in both Figures 1A,B. To achieve this
in Figures 1A, for each gene, we compute mutual exclusivity with
a random subsample of the CGC reference set, the same size as
the set of CGC neighbors of that gene. We repeat this random
sampling 100 times and plot the mean percent significant findings
value. For reference, Supplementary Figure S3A, S3D contains
versions of Figures 1A,C, where all CGC genes (i.e., with and
without CGC neighbors) are plotted and mutual exclusivities are
checked between all CGC pairs, as it was done in van de Haar
et al., 2019.

In Figures 1B, we observe a reduced correlation when network
information is included (Pearson correlation -0.4, p-value 4.91e −
4). We also run DISCOVER Strat where stratification is based on
CMS subtypes (Guinney et al., 2015). We plot these results in
Figures 1C where we again ensure comparability with Figures
1D where both subtype and network information are considered.
Comparing Figures 1A and Figures 1C, we verify the findings of
van de Haar et al., although with less significance in correlation
difference (Pearson correlation −0.73, p-value 2.8e − 13). It
should be noted that the subtype stratification inherently
causes an overall decrease in percent significant findings, not
specific to genes with low MLA. On the contrary the idea of ME
corrections through network incorporation, materialized in the
comparison of Figures 1A and Figures 1B, inherently leads to an
increase in percent significant findings. Most of the decreases
occur in genes with small number of CGC neighbors. When we
compare Figures 1D to Figures 1B, the decrease in correlation
from −0.4 to −0.36 indicates that including subtype information

is still useful when used on top of network-based corrections we
propose.

Next, we utilize waterfall plots to compare the outputs of
DISCOVER and DISCOVER-Strat to assess how MLA and
subtype information can affect mutual exclusivity findings.
Figures 2A shows two selected gene pairs that display
significant mutual exclusivity based on both DISCOVER and
DISCOVER-Strat estimations on TCGA COADREAD dataset.
The mutual exclusivity between BRAF and NRAS, two members
of the MAPK pathway, is well-known and has been detected in
multiple cancer types including melanoma, myeloma and
colorectal cancer (Samowitz et al., 2006; Roth et al., 2010;
Popovici et al., 2012) BRAF is frequently mutated in patients
from CMS1 subtype whereas NRAS shows almost no mutation
across these patients. However, since BRAF and NRAS mutations
are mutually exclusive across not only CMS1 subtype but also
across the other subtypes, DISCOVER-Strat identifies this pair as
significantly mutually exclusive. Similarly, SMAD3 and SMAD4
are two members of the TGF-β pathway and the mutual
exclusivity between these two transcription factors is
previously reported in colorectal cancer (Fleming et al., 2013).
Mutations on SMAD3 and SMAD4 are distributed almost
uniformly across the subtypes. As such, the mutual exclusivity
between the mutations of these two genes is still significant when
subtype information is incorporated. Figures 2B similarly shows
two selected gene pairs that display significant mutual exclusivity
based on DISCOVER but not based on DISCOVER Strat. For the
first pair, we observe that NUP98 is mutated almost exclusively in
patients from the CMS1 subtype which shows hypermutation due
to microsatellite instability. On the other hand, there is a
depletion of APC mutations among the patients from the
CMS1 subtype which results in a low MLA value. As such,

FIGURE 2 |Waterfall plots of the distribution of mutations for selected gene pairs. (A)Mutation distribution of two selected gene pairs (BRAF-NRAS and SMAD4-
SMAD3) that are found to be significantly mutually exclusive based on both DISCOVER and DISCOVER-Strat estimations. (B)Mutation distribution of two selected gene
pairs (APC-NUP98 and KRAS-PDE4DIP) that are found to be significantly mutually exclusive based on DISCOVER but not based on DISCOVER-Strat. Note that the set
of samples included in each plot is determined by finding the set of patients that have a mutation in at least one of the listed genes. GenVisR R package is used to
generate the waterfall plots (Skidmore et al., 2016). Subtype information is downloaded from (Guinney et al., 2015).
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DISCOVER Strat fails to detect a significant ME between these
two genes since it explores ME within each subtype separately. A
similar observation can also be made for the KRAS-PDE4DIP
pair where the former has a low MLA and the latter has a
high MLA.

Supplementary Figure S2 compares the MLA of the reference
cancer genes with the percent significant findings in mutual
exclusivity tests for BRCA. Similar to the results that we
obtain for COADREAD data, including network information
reduces the correlation between MLA and ME detection rate
(Supplementary Figures S2B vs S2C). The magnitude of
reduction is even more significant than what we observe for
COADREAD data (Pearson correlation −0.93 vs −0.27).
Interestingly, including subtype information results in a very
slight decrease in correlation coefficient (−0.93 to −0.91)
(Supplementary Figures S2B vs S2E) as opposed to what we
observe for COADREAD. We observe that including subtype
information on top of network information results in no decrease
in correlation (Supplementary Figures S2C vs S2F). This
difference in the effect of including subtype information for
BRCA and COADREAD datasets could be related to the
average tumor mutation load of subtypes. BRCA subtypes
have comparable average TML values (Her2: 146, LumA:65,
LumB: 71, Normal: 55) whereas the CMS1 subtype in
COADREAD has a dramatically larger average TML value
compared to the other subtypes of COADREAD (CMS1: 1387,
CMS2:93, CMS3: 272, CMS4: 212) We repeat the same analysis
with the other ME detection methods as well as for other cancer
types when t is set to 20 (Supplementary Figures S1-S8). We
observe that the percent significant finding values can vary
remarkably across the tumor types. Compared to other cancer
types, we observe smaller percent significant findings for LUSC
(Supplementary Figures S5A,S5D, S5G). Similarly, very few
pairs have percent significance value ≥ 20 when we consider
network information in LUSC (Supplementary Figures
S5C,S5F,S5I). On the contrary, we observe many pairs with
large percent significant values for CGC-CGC neighbors in
UCEC data. This is particularly true for DISCOVER and
WeXT results (Supplementary Figures S8C–S8L).

When we consider the correlation between MLA and percent
significant values, we observe that adding network information
decreases the correlation coefficient values for all cancer types and
for all ME detection methods except for Fisher’s Exact Test.
Fisher’s Exact Test results show an increased correlation with the
addition of network information for LUSC and SKCM
(Supplementary Figures S5-S6 D vs F). Also, the correlation
coefficient can not be computed for LUAD and STAD since
Fisher’s Exact Test gives a value of 0 for the percent significant
findings of all considered genes (Supplementary Figures S4D-
S7F). Another interesting observation is the variance in
magnitude of decrease in correlation values across different
tumor types. In particular, we observe a smaller decrease in
correlation values for LUAD compared to other cancer types.
The analogous results are also available for t � 5 setting
(Supplementary Figures S9-S16). For all the cancer types, the
correlation between MLA values and percent significant findings
decreases and becomes non-significant for most cases.

We should also note that the majority of CGC genes have only
one neighbor within the data setting of the cancer type under
consideration. This leads to percentage significant findings of
either 0 or 1 in many cases simply because these are the only
possible values; for COADREAD see Figures 1B and Figures 1D
where 41 out of 74 genes under study have only one CGC
neighbor in the COADREAD data settings. To avoid any such
possible biases, we repeat the same evaluations after filtering out
those CGC genes with only one neighbor. The evaluations still
provide significant decreases in correlation coefficient values
analogous to the decreases observed in Figures 1B as
compared to Figures 1A and Figures 1D as compared to
Figures 1C. For detailed results, see Supplementary Figures
S17-S24 for t � 20 and Supplementary Figures S25-S32 for t � 5.

Individual genes of interest are those that have increased
percent significant findings when network neigborhood
information is incorporated while at the same have significant
number of CGC neighbors. More specifically, for the former
constraint, we identify the CGC genes with at least 0.1 increase in
percentage of significant findings value of WeXT, DISCOVER
andMEMowhen the network information is included as opposed
to the scenario when it is not (e.g., for COADREAD, Figures 1A
vs Figures 1B). We choose these 3 MEmethods since they are top
performers based on the defined metrics in Section 3.1. For
STAD, SKCM and UCEC, since MEMo results are unavailable,
we only consider WeXT and DISCOVER results. For the second
constraint, we include the CGC genes with at least 3 CGC
neighbors. For COADREAD, this selection procedure results
in four genes: EP300, CREBBP, NCOA2 and NCOR2. Among
these, EP300 is a well-known tumor suppressor in epithelial
cancer types including COADREAD (Gayther et al., 2000).
For BRCA, the only identified gene is PIK3R1. PIK3R1 is
found to be significantly mutually exclusive with PIK3CA and
SPEN based on both WeXT, DISCOVER and MEMo results.
PIK3R1 and PIK3CA are members of the PI3K pathway and their
mutual exclusivity has been previously established in the
literature (Chen et al., 2018). For LUAD, PTPRB is the only
identified gene and is found to be mutually exclusive with EGFR,
a well-known oncogene in non-small cell lung cancer (Bethune
et al., 2010). The set of identified genes for STAD are NCOA2,
NCOR2 and CREBBP; all of which are found to be mutually
exclusive with TP53. For SKCM, we identify ERBB4, RAC1,
EP300 and ITK. ERBB4 is a well-known oncogene in skin
cancer and found to be mutually exclusive with ERBB2
(Prickett et al., 2009; Nielsen et al., 2014). ERBB2 and ERBB4
indeed belong to the same family (i.e. ErbB family of receptor
tyrosine kinases) and form a heterodimer receptor for Heparin-
binding EGF-like growth factor (HB-EGF) (Iwamoto et al., 2017).
RAC1 mutation P29S is an established driver in melanoma (Jiang
et al., 2018). RAC1 is found to be mutually exclusive with MYH9,
a tumor suppressor in melanoma (Singh et al., 2020). Lastly, ITK
has been shown to be an oncogene in melanoma (Carson et al.,
2015). For UCEC, we identify 33 genes in total. Among these, KIT
and PTEN have established roles in UCEC cancer development
(Chang et al., 2015; Wang et al., 2020). Moreover, PTEN is found
to be strongly mutually exclusive with SPOP, whose mutations
are also associated with endometrial cancer (Clark and Burleson,
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2020). Lastly, for BLCA and LUSC, no gene satisfies the
abovementioned criteria. Overall these results suggest that the
CGC genes that show increased ME with network incorporation
as well as their mutually exclusive partner genes often have
established roles in the development of the particular cancer type.

3.4 Mutual Exclusivity Evaluations Based on
Corrections via Tissue-Specific Networks
We first provide our ME evaluations with respect to the metrics
defined in Section 3.1 by replacing the non-specific networks
with TSNs. We provide two types of comparisons; one where we
compare TSN0.5 with the original non-tissue specific Intact
network and one where results of TSN0.5 are compared against
TSN0. We do the latter to avoid artifacts that may be introduced
due to the fact that some genes in the original Intact network
might be simply missing from even TSN0 since they may be
nonexistent in the GTEX database. For the BLCA dataset,
comparing the F1 scores of the ME methods under TSN0 and
TSN0.5 settings, we observe that the scores of all methods are
higher for the latter network. The largest percent increase of 10%
is observed forWeXTwhen the control group isX 1. Similarly, the
largest percent increase of 12% is observed for MEMo when the
control group is X 2. On the other hand, when we compare the

scores of TSN0 against the original network, the differences are
negligible. The next largest difference between the F1 scores
obtained under TSN0.5 as compared to TSN0 is observed in
STAD where we see a 7% increase in DISCOVER’s score for
X 1, and a 10% increase inWeXT’s score forX 2. For the rest of the
cancer types under study, for LUSC and UCEC we observe slight
increase in performances of all the ME methods comparing the
metrics under TSN0.5 against TSN0. For COADREAD, BRCA and
SKCM we observe both increases and decreases in performances
but the differences are almost negligible; see Supplementary
Tables S50-S81 for detailed results.

Figure 3 compares the ROC curves of CGC gene pairs and
non-CGC gene pairs for COADREAD data where mutual
exclusivities are estimated with DISCOVER, DISCOVER Strat,
Fisher’s Exact Test, MEGSA, MEMo and WeXT with t � 20. We
observe that all the ME methods estimate stronger mutual
exclusivities for tissue-specific CGC gene pairs compared to
non-tissue-specific CGC gene pairs since AUROCs are greater
than 0.5. Additionally, we observe much smaller AUROCs for the
control group where we repeat the same analysis with non-CGC
gene pairs. Analogous results are available for the other cancer
types where both the positive and negative set contains at least 10
number of pairs when t is set to 20. (Supplementary Figures
S33–S35). We observe a similar result for SKCM where CGC

FIGURE 3 | Performance of selected ME tests in terms of discriminating TSN and non-TSN gene pairs based on estimated ME p-values on COADREAD data. Blue
curve is plotted with CGC gene pairs and red curve is plotted with non-CGC gene pairs. Mutual exclusivities are estimated with (A) DISCOVER, (B) DISCOVER Strat, (C)
Fisher’s Exact Test, (D) MEGSA, (E) MEMo and (G) WeXT respectively.
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pairs result in larger AUROCs compared to non-CGC pairs for all
ME methods (Supplementary Figure S34). We observe a steep
increase in the ROC curves plotted for MEGSA results. This is
due to the utilized likelihood ratio test that results in a p-value of
0.5 when the likelihood values are equal to each other. For UCEC,
we see a significant difference between the ROC curves of CGC-
pairs vs non-CGC pairs for Fisher’s Exact Test and MEGSA;
whereas the corresponding difference is negligible for
DISCOVER and WeXT.

4 CASE STUDY

Apart from the defined network-centric ME evaluation framework,
we discuss a case study where we assess whether mutual exclusivities
estimated by the considered ME methods improve the performance
of driver identification methods that utilize mutual exclusivity
information. To this end, we compare the original version of
MEXCOwalk with its alternatives where mutual exclusivity
estimates are provided by the employed ME methods. Assuming
that gi and gj genes are mutated in patient sets Si and Sj, respectively;
MEXCOWalk simply computes the mutual exclusivity between

these two genes with the following formula: |Si ∪ Sj|/(|Si| + |Sj|).
MEXCOwalk uses the estimated mutual exclusivity values as
part of edge weights. As such, to utilize the p-values output by ME
detection methods in MEXCOwalk, we first compute −log (p-value)
and then convert the resulting values between 0 and 1. To this end,
we replace all −log (p-value)’s larger than 10 with 1. We then find
the maximum −log (p-value) less than 10 and divide all other −log
(p-value)’s with this value. The reason why we set a threshold for
finding the maximum is the large differences across the smallest
p-values output by different ME methods. For instance, WeXT
outputs a very large range of p-values and if we use the smallest
p-value to scale, all other −log (p-value)s will be converted to values
that are very close to 0. In the original MEXCOWalk study, a
threshold of 0.7 is applied to ME values such that all values ≤0.7
are clamped to 0. This conversion is equivalent to removing
those edges from the network since the edge weights include a
multiplicative term for ME values. We find that the removal of
these edges correspond to a 0.035 percent reduction in graph
density. For the current analysis, we determine the threshold
value for each ME detection method to achieve the same percent
density reduction in the graph. Figure 4 shows the number of
recovered CGC genes for fixed output gene sizes from 100 to

FIGURE 4 | The number of recovered CGC genes for the original MEXCOwalk as well as for its modified versions where mutual exclusivity values are estimated with
DISCOVER, Fisher’s Exact Test and WeXT. COADREAD dataset is used with t � 5 setting. The numbers in parentheses indicate the area under the ROC curve for the
corresponding curve.
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2,500 as a ROC curve for original MEXCOwalk as well as for
versions of MEXCOwalk where mutual exclusivity values are
estimated with DISCOVER, Fisher’s Exact Test and WeXT,
respectively. We observe that MEXCOwalk with WeXT’s ME
values results in the best AUROC value for COADREAD.
Supplementary Figures S36 shows the analogous results for
the other cancer types. For, LUSC, STAD and UCEC,
MEXCOwalk with DISCOVER gives the best AUROC
whereas for BLCA, LUAD and SKCM MEXCOwalk with
Fisher’s Exact Test performs the best. An important
observation is the worse performance of MEXCOwalk with
Fisher’s Exact Test compared to the original MEXCOwalk for
COADREAD, STAD and UCEC. As such, using Fisher’s Exact
Test in place of MEXCOwalk’s original ME values does have the
potential to decrease the performance whereas for the other ME
methods we do not observe such a risk. Note that for these
analysis we employ t � 5 since t � 20 filtering does not provide
enough number of genes to be evaluated.

5 DISCUSSION

It is important to investigate whether the employment of an
interaction network within our ME evaluation framework causes
any ascertainment bias in the findings and to elaborate on how any
such potential bias is mediated within the framework. It is established
that known cancer genes have larger number of interactions
compared to other genes in the network (Hou and Ma, 2014a).
This implies a potential bias that needs to be resolved in cancer driver
gene identification methods employing interaction network data.
Such a bias is less of a problem for the current study, since our aim is
not to identify novel cancer driver genes but to utilize the interaction
network and known cancer genes to form a ground truth of mutually
exclusive interactions for evaluating existing ME methods. On the
contrary, the fact that most known cancer genes have well-
characterized interactions in the network provides a benefit for
our work as it supports the confidence of our true positive
examples. Additionally, our framework makes use of not only
genes from the reference set S but also genes not in S to create
random controls. Nevertheless, the fact that some known cancer
genes have significantly larger number of interactions compared to
other known cancer genes could lead to a bias. For instance, for our
analysis of the COADREAD data (t � 20,S � CGC), there are 74
CGC genes among which five CGC genes have more than ten CGC
neighbors whereas 41 have exactly one CGC neighbor. This could
lead to a bias as CGC genes with large number of CGC neighbors
contribute to the aggregate statistics and metrics much more than
those CGC genes with small number of CGC neighbors. To mediate
this bias, our framework includes additional results where all the
statistics and the traditional measures such as the F1 score are
calculated in a degree-normalized way for each gene and the
gene-level results are then aggregated by taking an average across
the genes. These results are available in the Supplementary
Document; Supplementary Tables S12, S24, S36, S48. To
summarize, the degree-normalized results are in agreement with
those of the previous settings in almost all the cases in terms of
ranking based on F1 score.

Another important point worth emphasizing is that apart
from the aggregate statistics provided in the previous sections
as part of the metrics for the network-centric ME evaluations, our
proposed framework also provides analogous statistics at the
gene-level as well. Such statistics may in fact be of more interest to
cancer biologists than the aggregate statistics in certain cases.
Several interesting observations can be made through an
inspection of these gene-level evaluations, especially for the
settings where the conventionally defined F1 score fails in
quantifying ME. Genes with low MLA comprise an example
setting, where TP53 is a leading member. Consider the case of
TP53 in COADREAD evaluations for instance. With respect to
the degree-normalized setting, the values of precision, sensitivity,
precisionstrict and sensitivitystrict for WeXT are respectively 0.5, 1,
0.25, 0.25 which gives rise to an F1 score of 0.66 and F1strict score
of 0.25. On the other hand, MEMo provides the same precision,
sensitivity and F1 scores as WeXT whereas its precisionstrict,
sensitivitystrict and F1strict scores are all 0. To summarize,
although the inspection of the F1 scores does not provide a
distinction between the two results, an inspection of the F1strict
scores establishes that MEMo is worse than WeXT in this setting.
We note that the advantages of inspections based on the strict
definitions of the metrics rather than the conventional ones are
also apparent in the aggregate analysis as well. In addition to the
COADREAD evaluations shown in Table 2, BRCA also contains
an example instance where the conventional and the strict
versions of the metrics provide different conclusions; see
Supplementary Table S7B. In terms of the F1 scores,
DISCOVER Strat ranks fourth, whereas comparing F1strict
scores it ranks the second. Also, overall we observe that
MEMo’s performance gets severely affected when the strict
versions of the metrics are employed.

Next, our robustness analysis results reveal some suggestions
for potential users of our framework. We recommend using a
p-value threshold smaller than 0.1 but larger than 0.05 as lower
threshold values are too stringent and lead to too few predicted
positives. Regarding robustness_iterations, we tested values both
smaller than and higher than the default value of 100 for
COADREAD evaluations: 5, 50, 100, 300 and 500. We
repeated each experiment 20 times and calculated the standard
deviation of the obtained set of F1 and F1strict scores. For the
majority of the cases, we observe a large decrease in the standard
deviation values when robustness_iterations is increased from 5
to 50. (Supplementary Table S82). This analysis suggests that the
robustness_iterations should be set to a at least 50. Lastly, we
observe that different PPI networks can lead to large differences
in both the F1/F1strict scores and the ranking of the methods. As
such, exploring different PPI sources would be beneficial.

To assess whether our findings extend to other datasets other
than TCGA, we repeat our evaluations on somatic mutation data
of 402 colon cancer patients within the Pancancer Analysis of
Whole Genomes (PCAWG) study (Campbell, 2020).
Supplementary Tables S83-S86 shows the ME evaluations
with respect to the metrics defined in section 4.2. We observe
an overall decrease in F1strict scores of the methods. Compared to
analogous results in TCGA data, WexT still performs the best in
terms of F1strict score whereas the second best performing method
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is changed fromMEMo to DISCOVER. The changes with respect
to varying the p-value threshold, robustness_iterations value,
input PPI, reference cancer gene set are consistent with the
changes that we previously observe for the TCGA
COADREAD dataset. When we switch from IntAct to its TSN
version, we observe that all the ME methods estimate stronger
mutual exclusivities for the tissue-specific CGC gene pairs
compared to the non-tissue-specific CGC gene pairs as evident
from AUROC values greater than 0.5; see Supplementary
Figures S37, S38 shows the results of MLA where we observe
slightly smaller correlation values for DISCOVER (−0.84 vs
−0.88) as compared to the results obtained from TCGA
COADREAD dataset. We observe findings similar to those
obtained from the TCGA COADREAD data in that the
correlation values drop when the network information is
incorporated. To summarize, our conclusions remain the same
when we repeat our analyses on an entirely different cohort from
the PCAWG study.

The majority of the somatic mutations observed in cancer
genomics are passenger mutations. In the evaluations provided in
the Results section we employ a simple filtering strategy where we
remove silent mutations and mutations on non-coding regions of
the genes. Additionally, we also assess the effects of employing a
more elaborate mutation filtering procedure. To this end, we
download the predictions of the Muiños et al. study on COREAD
type (Muinos et al., 2021). This includes the classification of all
possible mutations on 12 genes as driver or passenger mutations.
Accordingly, we filter out the proposed passenger mutations from
our mutation data and repeat all of our relevant analyses. We
observe that the ranking of the methods according to the metrics
proposed in section 4.2 remain the same where WExT, MEMO,
and DISCOVER Strat show reduced F1strict scores, and
DISCOVER and Fisher’s Exact Test show higher F1strict scores
(Supplementary Tables S87-S90). The TSN results and the MLA
analysis results are also similar to our original results
(Supplementary Figures S39-S40). Muiños et al. provides
classifications of mutations on a subset of genes which have
training data larger than a certain size. If such classifications
become available for a larger set of genes in the future we can
provide a better assessment regarding the filtering procedures
employing these classifications.

Mutated genes in cancer prevalently exhibit a long tail
phenomenon where few genes are mutated in many patients
and large number of genes are mutated in few patients. To check
whether assessing the mutual exclusivity of gene pairs with very
different mutation frequencies bias the evaluations of the
compared ME methods, we repeat our analyses after filtering
out the genes with mutation frequencies < 5% and > 30%. The
results after this filtering step are available in Supplementary
Tables S91-S93. We observe that the ranking of the methods
remain the same where we see a significant increase in Precision/
Precisionstrict values and a slight decrease in Sensitivity/
Sensitivitystrict values. When we look at the Precisionstrict values
in more detail, we observe that the FPstrict values drop
dramatically when we apply the filtering. This suggests that
the control gene pairs that include genes with very low or very
high mutation frequencies can have more significant p-values as

compared to the p-values obtained for the corresponding CGC-
CGC pair.

We also evaluate a more general ME detection method
SELECT, which investigates both types of relationships among
pairs, co-occurence and ME simultaneously. SELECT outputs
ME associated scores to only a subset of the input gene pairs.
Thus one strategy for comparing the results of SELECT against
other methods is to focus only on such subsets. The relevant
results where we use this strategy are available in Supplementary
Tables S94-S97. We report evaluations on two subsets of TCGA
COADREAD dataset: 1) the set of CGC-CGC pairs where
SELECT results are available, 2) the set of CGC-CGC pairs
where SELECT’s version which uses subtype information
(i.e., SELECTsubtype) are available. For the former, we observe
that SELECT and SELECTsubtype rank the fourth after WExT,
MEMO, and DISCOVER. For the latter evaluation,
SELECTsubtype performs better than SELECT although both of
them still rank the fourth among the other ME methods. Another
strategy to fix this problem is to assign the worst ASC score to
such pairs without specific ASC scores in the ME direction. We
employ this approach as well and observe that it gives no
significant difference in the comparisons.

Lastly, it is important to mention certain limitations of the
proposed framework. Our framework is based on the
presupposition that ME is likely to occur between interacting
known cancer genes. Although rare, there may exist two different
types of exceptions to this assumption; ME can be observed
between non-interacting known drivers and the relationship
between an interacting pair of known drivers can be that of
co-occurrence rather than that of ME. These constitute
respectively the false negative and the false positive events in
our framework. An example instance of the former is the
mutually exclusive mutations of APC and RNF43 observed in
colorectal cancer [Mina et al., 2017] and example instance of the
latter is the co-occurrence of CCNE1 and TP53 alterations
[Zhang et al., 2014]. Both of these patterns are currently
ignored by our framework and incorporation of mechanisms
to dissect each such pattern to increase the performance of true
ME detection is an important future step. Another limitation of
the current framework is that it requires the availability of whole-
genome or whole-exome sequencing data.

6 CONCLUSION

We propose a network-centric framework to evaluate pairwise
mutual exclusivity findings reported by different ME algorithms.
The first component of our framework consists of useful
definitions of statistics employed in the network-centric ME
evaluations. We observe that for the majority of the cancer
types under study WeXT outperforms the other methods in
terms of F1 score measured with respect to appropriately
defined control groups. In half of the cancer types DISCOVER
and in the other half MEMo perform as the second best methods.
When comparing different cancer types we observe that BRCA
and COADREAD are among the top two types leading to
maximum F1 scores with at least one of the ME methods
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providing a score greater than 0.5. We note that DISCOVER Strat
is only applicable in two cancer types among a total of eight since
these are the only cancer types with well-defined subtypes.
Furthermore, among these two cancer types, DISCOVER Strat
outperforms original DISCOVER algorithm in BRCA, whereas it
is the second worst method after Fisher’s Exact Test in
COADREAD. This is noteworthy since van de Haar et al.
propose subtype stratification as employed by DISCOVER
Strat as a way to emphasize true mutual exclusivity by
reducing mutation load confounding (van de Haar et al.,
2019). We also observe that Fisher’s exact test and MEGSA
are more conservative compared to DISCOVER and WeXT,
where from the latter group, WeXT outputs notably larger
number of significant p-values. The second component of our
framework evaluates ME tests by comparing two types of
measures obtained with and without network information.
First measure is with respect to the percent significant findings
of mutually exclusive gene pairs, whereas the second is based on
MLC values. In most of the cancer types and for most of the genes
we observe an increase with respect to the former whereas a
decrease with respect to the latter measure. Finally, we repeat the
same analysis by considering TSNs in the network-centric
framework. Considerable improvements achieved due to the
use of TSNs as opposed tissue nonspecific interaction network
are only observed for BLCA and STAD datasets. A more detailed
analysis in terms of comparing ROCs of CGC gene pairs and non-
CGC gene pairs on cancer types with considerable number of
tissue-specific gene pairs indicate the advantages of employing
tissue specificity in detecting mutual exclusivity in COADREAD,
SKCM, and UCEC. Finally we extend out network-centric
evaluation framework to assess whether including network
knowledge reduces the mutation load confounding problem.

As noted earlier the proposed framework is intended for the
network-centric evaluations of mutual exclusivities of pairs of
genes rather than groups of genes. Such a choice stems form the
fact that the mutual exclusivities are commonly made use of in
driver gene/module identification algorithms which mostly
employ pairwise mutual exclusivities. Furthermore the
extensive evaluation settings proposed, the number of ME
methods under study and their own computational
requirements, and the potentially exponential computational
complexity inherent in handling groups of genes limits the
scope of the current study to evaluations of pairwise ME
scorings. Nonetheless most statistical ME methods are capable
of providing ME results for groups of genes as well. Regarding the
ME tests considered in this study, the main ME test provided by
DISCOVER is based on a pairwise test definition but it also
extends the definition for possible use in quantifying the ME of a
group of genes, although the experiments involving the latter are
based only on simulation data. The remaining tests MEGSA,
MEMo, and WeXT are all ME tests specifically designed for

groups of genes. An important direction for future work is to
design a suitable extension of the proposed network-centric
framework to evaluate the results of ME tests on groups of
genes. Design choices relevant for such an extension would
involve an appropriate and computationally efficient definition
of the reference groups of genes analogous to a pair of interacting
genes from the set S in the current setting and the definitions of
control groups analogous toX 1 andX 2. Another future direction
is to apply our network-centric framework on heterogeneous
biological networks incorporating biological pathway
information with PPI network data. Such incorporations have
been successfully applied in other bioinformatics domains such as
cancer driver identification (Hou and Ma, 2014b; Dinstag and
Shamir, 2020).
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